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Abstract

The premature convergence of genetic algorithms (GAs) is the most major factor of slow evolution of GAs. In this
paper we propose a novel method to solve this problem through competition of multiple offspring of individuals. Unlike
existing methods, each parents in our method generates multiple offspring and then generated multiple offspring compete
each other, finally winner offspring become to real offspring. From this multiple offspring competition, our GA rarely
falls into the premature convergence and easily gets out of the local optimum areas without negative effects. This makes
our GA fast evolve to the global optimum. Experimental results with four function optimization problems showed that
our method was superior to the original GA and had similar performances to the best ones of queen-bee GA with best
parameters.
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1. Introduction

Although genetic algorithms (GAs) have been widely
used to many engineering problems, the premature con-
vergence problem of GAs was always an obstacle of suc-
cessful applications because it caused slow evolution of
GAs [1–4]. This premature convergence is that relatively
good initial individuals located at local optimum areas be-
come dominant after some generations because the selec-
tion pressure of GAs is high. If we control the selection
pressure to low, then the evolution speed to the global opti-
mum is also decreased. Therefore, this is not the solution.
Once a GA falls into premature convergence, it is very dif-
ficult for individuals to get out of the local optimum areas
because most individuals located small local optimum ar-
eas are similar to each other, so generated offspring are also
similar to their parents. As a result, individuals stay long
time at the local optimum areas. This is so called the pre-
mature convergence problem of GAs.

In order to solve this problem, a lot of methods have
been introduced to date [4–7]. However, they didn’t pro-
vide a fundamental solution in that their methods had neg-
ative effects even if they showed relatively good perfor-
mances under appropriate parameters. This is because
preventing from falling the premature convergence also
causes slow evolution of GAs and forcing fast evolution
also makes GAs fall into premature convergence. In other
words, keeping the diversity of individuals in order not to
fall into premature convergence also enables GAs not to

converge to the global optimum. As an example, if we
increase the mutation probability to keep the diversity of
individuals, then it also destroys the good building blocks
of good individuals and results in slow evolution of GAs.
This is a dilemma.

In this paper, we propose a simple, but effective and
fundamental solution by employing competition of mul-
tiple offspring. In the reproduction process of GAs, our
method unlike the existing methods generates multiple off-
spring and then generated multiple offsprings compete each
other, finally winner offspring become to real offspring.
For generating multiple offspring, we used three generation
strategies: normal generation [1], strongly mutated gener-
ation, and queen-bee generation [6]. At the initial stage of
GA, the offspring normally generated may be mainly win-
ner because the individuals of GA have diversity and some-
times the offspring generated by queen-bee generation may
accelerate the speed of evolution. If the individuals of GA
fall into local optimum areas, then the offspring generated
by strongly mutated generation may be often winner and
this helps the GA get out of the local optimum areas.

Our method is a fundamental solution of the premature
convergence problem of GAs because our method unlike
existing methods has no negative effects. That is, if the
good building blocks of good individuals are destroyed by
the strong mutation for keeping diversity, then the offspring
will not be winner and so it does not affect to the next gen-
erations. From these properties, our GA rarely falls into the
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premature convergence and easily gets out of the local op-
timum areas without negative effects. This makes our GA
fast evolve to the global optimum without falling in local
optimum.

In order to measure the performances of our method,
we experimented our GA with four function optimization
problems and compared its results to those of original GA
[1] and those of queen-bee GA [6]. Experimental results
showed that our GA was superior to the original GA and
had similar results to the best ones of queen-bee GA with
best parameters empirically selected. Although our method
does not show better results than the queen-bee GA, our
method is very effective than the queen-bee GA in that our
method does not need additional parameters and empirical
selection of the parameters.

This paper is organized as follows. Section 2 describes
proposed multiple offspring competition method for ge-
netic algorithms. Experimental results and discussion are
provided in section 3. We conclude our paper in section 4.

2. Multiple Offspring Competition Method

This section first introduces the premature convergence
problem and then describes proposed genetic algorithm
with multiple offspring competition.

2.1 Premature Convergence Problem
Premature convergence addresses that relatively good

individuals within local optimum areas at initial genera-
tions are repeatedly regenerated with small changes [5, 8,
9]. This makes most individuals be located within the lo-
cal optimum areas after some generations. Once a GA falls
into this local optimum areas, it is very hard for the indi-
viduals to get out of these areas because most individuals
are similar to each other. In order to get out of the local
optimum areas, GA should generate offsprings outside the
local optimum areas (in other words, GA should increase
the diversity of individuals). However, it is not easy be-
cause the crossover operation with similar parents cannot
produce quite different offsprings from their parents. The
mutation operation also cannot increase the diversity of in-
dividuals owing to the low mutation probability. As a re-
sult, individuals stay long time at the local optimum areas.
In other words, it causes slow evolution of GAs.

In order to solve this premature convergence problem,
a lot of works have been introduce to date [2–4, 10–13].
Their methods can be classified into three categories: de-
terministic methods, adaptive methods, and self-adaptive
methods. Most existing methods regardless of categories
have used the mutation probability as a control parameter
of diversity. That is, they increased the mutation probabil-
ity for increasing the diversity and vice versa. These con-

trol methods of mutation probability, however, had a neg-
ative effect that increasing the mutation probability could
also increase the probability of destroying the good build-
ing blocks of good individuals. This causes another prob-
lem.

In this paper, we employed the multiple offspring com-
petition in a reproduction process of GA. Unlike the pre-
vious methods, each parents in our method generate three
types of offsprings according to the generation strategies,
they compete with each other, and finally the winner among
three offsprings become to real offspring. By adopting
normal generation [1], strongly mutated generation, and
queen-bee generation [6], our method operates appropri-
ately for the situation of GA. That is, normal generation
under the individuals have diversity will strongly affect to
the individuals of the next generation while strongly mu-
tated generation under most individuals fall into local op-
timum areas will increase the diversity of individuals. The
queen-bee generation will accelerates the evolution of GAs
without worrying about the premature convergence prob-
lem. Even if inappropriate offsprings are generated by
some generation strategies, it will not affect to the indi-
viduals of next generation because they will not be winner.
Finally, our multiple offspring competition method causes
fast evolution of GAs without negative effects.

2.2 Proposed Algorithm
Our genetic algorithm with multiple offspring compe-

tition is described in Algorithm 1. The asterisks in Al-
gorithm 1 mean additional operations to the original GA.
Each parents as shown in the algorithm generates three off-
spring and they compete each other, finally the winner off-
spring become to real offspring for the parents.

Algorithm 1 Genetic algorithm with multiple offspring
competition

// � : time //
// � : populations //
// �������
	 : selected individuals as parents //
// ��� : queen-bee (the best) individual in a generation //
// ������ � : normal and strong mutation probability //
// ����� � ��� � : normal, strongly mutated, and queen-bee off-
spring //
// ������� � � ������� : fitness of offspring ����� � ��� � //

1 t � 0
2 initialize ����� �
3 evaluate �����!�
4 while (not termination-condition)
5 do
6 t � t + 1
7 select �����!� from ������"$#%�
8 recombine �����!�
9 normal generation of offspring
10 do crossover with parents ���&�'�
	
11 do mutation with ��
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12 evaluate offspring �
13 strongly mutated generation of offspring (*)
14 do crossover with parents ���&���
	 (*)
15 do mutation with � � (*)
16 evaluate offspring � � (*)
17 queen-bee generation of offspring (*)
18 do crossover with parents � � ����� (*)
19 do mutation with �� (*)
20 evaluate offspring � � (*)
21 compete offsprings with � � ��� � � , and � �(� (*)
22 set the winner offspring to next offspring (*)
23 evaluate ����� �
24 end

The normal generation is the same as that of original
GA. In strongly mutated generation, crossover operation is
the same as that of the original GA, but mutation operation
is performed with strong mutation probability ) �*,+-+ ) *

.
From this, the strongly mutated offspring is quite differ-
ent from their parents. If this strongly mutated offspring
is better than the other offsprings, then it will be real off-
spring and helps the GA to keep diversity of individuals.
That is, this enables GA not to fall into local optimum or
to get out of the local optimum. Even if the strongly mu-
tated offspring is quite worse than the other offsprings, it
is not harmful to GA because it will not be real offspring.
This is one of advantages of our method. In queen-bee gen-
eration, the queen-bee individual (in other words, the best
individual in a generation) is always selected as the one of
parents for all parents [6]. Since the queen-bee generation
uses normal mutation probability, the offspring has many
parts of good building blocks of the queen-bee individual.
This sometimes makes it possible for the GA to fast evolve
to the global optimum.

Since winner offspring become to real offspring, only
successful generation strategy affects to the next genera-
tion. If a GA does not fall into local optimum areas, we
can expect that normal generation plays a role of steady
converge to the global optimum and the queen-bee gener-
ation often accelerates the speed of the convergence and
strongly mutated generation sometimes finds new good ar-
eas. Otherwise, we can expect that the strongly mutated
generation plays a role of increasing the diversity of indi-
viduals and sometimes normal generation and queen-bee
generation complements the role.

3. Experimental Results

Our GA was tested on four function optimization prob-
lems as shown in Equation 1. Functions . � to .�/ are De-
Jong function 2, DeJong function 5, Mexican hat function,
and Shafer function 2, respectively. Figure 1 shows the
input-output relations of four functions. Function . � is rel-
ative simple unlike the other functions in that it has only

one local optimum at the 0!132
4 57698
:;132�4 5�6'89< point. Since
the local optimum area, however, is quite broad, if the GA
falls this area, then it is hard for the GA to get out of this
area. Function .�= has manly local optimum areas near only
one optimum area. In the Mexican hat function .7> , since
a lot of local optimum areas around only one global opti-
mum at 0?5
:�59< point exist, individuals rarely approach to the
global optimum. Function .�/ has four local optimum near0!1-@A5
:B1-@A59< , 0C@;5D:B@;5'< , 0!@A5
:B1-@A59< , and 0!@;5D:B@A59< at the four
corners. These functions have been used so many tests be-
cause they has different properties.

We experimented with typical parameters as shown in
Table 1. If a GA finds the global optimum, then the gen-
eration number is recoded. Since the performances of GA
depend on the initial individuals, we experimented 10 runs
with different random number seeds and averaged the re-
sults. Table 2 shows experimental results (we omit the stan-
dard deviation values for simplicity). In the table, OGA,
QGA, and PGA mean original GA [1], queen-bee GA [6],
and proposed GA, respectively. For the queen-bee GA, we
set the parameters that showed best performances in the ex-
periments [6], that is, E is set to 5
4 8 and the strong mutation
probability to @94 5 . Although the queen-bee GA showed
great performances, it had a big drawback that its perfor-
mances depended on the value of E and the strong mutation
probability and there are no systematic selection methods.
Our method without such drawback showed similar perfor-
mances to the best results of the queen-bee GA. Only in
function . � , the PGA is inferior to the QGA because the
function . � has only one simple local optimum.

Since our methods is devised not to fall into premature
convergence and to get out the local optimum areas, it is
effective for the functions having many local optima. As
seen in the Table 2, the performance ratio QGA F PGA in
function . = is about @74 5 . This indicates that the PGA has
nearly same performance to the QGA. In more complex
and difficult functions . > and .G/ that have many local op-
timum areas, the PGA sometimes outperforms the OGA.
This results showed that our method could fast evolve the
individuals without negative effects falling into local opti-
mum areas.

In order to show the effects of three generation strate-
gies, we take a typical experiment of function . / with H75
population size and 2�6 individual length, which is the best
result of our method compared to the queen-bee GA as
shown in Table 2. In each generation, we count the num-
ber of winner offsprings according to the three generation
strategies. Figure 2 shows the winner count of each gener-
ation strategy within initial generations and average fitness
for showing the effects. As shown in the figure, initially
normal and queen-bee generations are dominant, but the
strongly mutated generation gradually becomes dominant
after I generation. Note that the average fitness is increased
as the winner count of strongly mutated offsprings and the
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. �KJ @;575L0NM = � 1OM�=;< =QP 0C@�1OM � < = : where 132�4 5�6'8SRTM�UVRW2
4 57698
.G= J 5
4 57592 P =�XY

Z([ � @\ PT] =U [ � 0^MLU_1a`�b c?d b \ dN<!e : where 1�f9I�4gI�H9fhRWM�U�RWf'I�4gI�H9f (1)

.G> J 5
4gI31 i ckjV0Cl M = � P M == < i ckjV0(l M = � P M == <m1n5
4gI0!@94 5 P 5
4 575D@90^M = � P M == <(<%0C@74 5 P 5D4 595
@'0NM = � P M == <C< : where 1-@;5oRTM�U�Rp1-@;5
. / J 0NM = � P M == <!qBr =�X i ckjV0?I75D0NM = � P M == <!qBr � P @�< = : where 1-@A5oRTM�UVRs1-@A5
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Table 1. Parameters for experiments
Parameters Values

Selection method roulette wheel selection
Crossover probabilities 5
4 f
Normal and strong mutation probabilities () * :^) �*

) ( 5D4 5'I�:;@ )
Population size () ) 10, 20, 30
Individual length ( t ) 24, 28 bits
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Table 2. Experimental resultst 24 28
fn ) OGA QGA PGA QGA F PGA OGA QGA PGA QGA F PGA

10 59078.5 208.4 18815.7 0.01 598051.8 359.0 12935.6 0.03. � 20 17194.1 169.7 21254.0 0.008 174747.3 85.9 16736.5 0.005
30 8377.9 80.0 14888.9 0.005 72868.3 57.0 28865.8 0.002
10 37401.3 657.8 910.9 0.7 1140458.0 3122.9 3857.9 0.8.G= 20 18759.6 132.3 134.8 0.99 257759.7 226.5 233.0 0.9
30 13983.2 337.9 185.5 1.8 136731.8 142.3 165.2 0.86
10 776085.3 3570.2 1751.8 2.0 30914774.3 4098.6 2149.2 1.9. > 20 521964.2 1719.1 1914.8 0.9 16675346.9 4433.3 1201.8 3.7
30 414819.2 7085.8 1769.7 4.0 5490873.5 5971.2 2496.8 2.4
10 250111.6 12334.9 24335.5 0.5 3847880.3 67880.8 104062.9 0.7. / 20 41878.4 47255.5 10622.2 4.4 900660.6 22126.0 38283.3 0.6
30 41464.1 125109.1 8647.5 14.5 751085.6 147167.4 19991.1 7.4

 0

 5

 10

 15

 20

 5  10  15  20  25  30  35  40  45  50

w
in

 c
ou

nt
er

s

generations

winner generation strategies

normal
strongly mutated

queen-bee
average fitness

Fig. 2 Effects of three generation strategies

267

Fast Evolution by Multiple Offspring Competition for Genetic Algorithms



winner count of strongly mutated offsprings are nearly in-
verse to the winner count of normal offsprings. This result
confirms our expectation.

4. Conclusion

In this paper, we introduced a new method to solve the
premature convergence problem of GA employing multi-
ple offspring competition. Each parents generated three
offspring using three generation strategies and winner off-
spring became to the real offspring. This allowed our GA
to fast approach to the global optimum without falling into
local optimum. It was found from experiments that our
method showed very similar performances to the best re-
sults of the queen-bee GA and sometimes showed better
performances than the queen-bee GA especially for com-
plex functions having many local optimum areas. This
means that our method is very effective and valuable.
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