DOI QR코드

DOI QR Code

종속성 네트워크 기반의 온라인 고객리뷰 분석시스템 설계 및 구현

Designn and Implementation Online Customer Reviews Analysis System based on Dependency Network Model

  • 김근형 (제주대학교 경영정보학과)
  • 투고 : 2010.08.13
  • 심사 : 2010.10.26
  • 발행 : 2010.11.28

초록

특정 제품이나 서비스에 대한 네티즌의 의견들은 고객뿐만 아니라 기업 입장에서도 마케팅이나 경영전략을 수립하기 위한 중요한 자료가 될 수 있기 때문에 온라인 고객리뷰를 분석하는 것은 매우 중요하다. 본 논문에서는 온라인 고객리뷰를 분석하기 위한 도구인 종속성 네트워크 모델을 제안하였고 종속성네트워크 모델을 기반으로 한 분석시스템을 설계하고 개발하였다. 종속성 네트워크모델은 고객리뷰 내의 주관적 문장과 객관적 문장을 분석대상으로 하며, 명사들 사이의 상대적 중요성과 연관성을 나타낼 수 있다. 시스템구현 결과, 종속성네트워크 모델은 오피니언마이닝 기술에 의하여 도출할 수 없는 새로운 정보 즉, 추출된 특징들 사이의 상대적 중요성 및 연관관계 등을 추출할 수 있음을 알 수 있었다.

It is very important to analyze online customer reviews, which are small documents of writing opinions or experiences about products or services, for both customers and companies because the customers can get good informations and the companies can establish good marketing strategies. In this paper, we did not propose only dependency network model which is tool for analyzing online customer reviews, but also designed and implemented the system based on the dependency network model. The dependency network model analyzes both subjective and objective sentences, so that it can represent relative importance and relationship between the nouns in the sentences. In the result of implementing, we recognized that relative importance and relationship between the features of products or services, which can not be mined by opinion mining, can be represented by the dependency network model.

키워드

참고문헌

  1. Xiaowen Ding, "A Holistic Lexicon-Based Approach to Opinion Mining," Proc. of the international conference on web search and web mining, pp.231-240, 2008.
  2. Jerzy Stefanowski and Dawid Weiss, "Comprehensible and Accurate Cluster Labels in Text Clustering," Conference RIAO 2007, Pittsburgh PA, USA, May, pp.34-45, 2007.
  3. Zamir and Etzioni, Grouper: a dynamic clustering interface to Web search results. Computer Networks, 31, pp.11-16, 1999.
  4. G. Salton, A. Singhal, C. Buckley, and M. Mitra, Automatic Text Decomposition using Text Segments and Text Themes," ACM Conference on Hypertext, pp.56-65, 1996.
  5. B. Boguraev and C. Kennedy, "Salience-Based Content Characterization of Text Documents," Proc. of the ACL'97/EACL'97 Workshop on Intelligent Scalable Text Summarization, pp.76-87, 1997.
  6. B. Liu, M. Hu, and J. Cheng, "Opinion observer: analyzing and comparing opinions on the Web," Proc. of the 14th international conference on WWW, pp.10-14, 2005.
  7. Christopher Scaffidi, Kevin Bierhoff, Eric Chang, Mikhael Felker, Herman Ng, Chun Jin, "Red Opal: Product-Feature Scoring from Reviews," Proc. of the 8th ACM conference on Electronic commerce, pp.11-15, 2007.
  8. Xiaowen Ding and Bing Lui, "The Utility of Lingusitic Rules in Opinion Mining," SIGR pp.811-812, 2007.
  9. E. Courses and T. Surveys, "Using SentiWordNet for multilingual sentiment analysis," Data Engineering Workshop ICDEW, pp.102-110, 2008.
  10. Minqing Hu and Bing Liu, "Mining and Summarizing Customer Reviews," KDD'04,pp.168-177, 2004. https://doi.org/10.1145/1014052.1014073
  11. Xiaowen Ding, Bing Liu and Philip S. Yu, "A Holistic Lexicon-Based Approach to Opinion Mining," WSDM'08, pp.231-239, 2008.
  12. http://nlp.kookmin.ac.kr/HAM/kor/download.html

피인용 문헌

  1. Study on Designing and Implementing Online Customer Analysis System based on Relational and Multi-dimensional Model vol.12, pp.4, 2012, https://doi.org/10.5392/JKCA.2012.12.04.076
  2. Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site vol.22, pp.3, 2016, https://doi.org/10.13088/jiis.2016.22.3.023