DOI QR코드

DOI QR Code

Optimization of Production Yield for Neohesperidin by Response Surface Methodology

반응표면 분석법을 이용한 neohesperidin 생산 수율의 최적화

  • Yang, Hee-Jong (Bioindustrial Process Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeong, Seong-Yeop (Bioindustrial Process Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Nack-Shick (Bioindustrial Process Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Keug-Hyun (Bioindustrial Process Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Chan-Sun (Bioindustrial Process Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Byoung-Dae (Bioindustrial Process Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University) ;
  • Ahn, Soon-Cheol (Department of Microbiology and Immunology, College of Medicine, Pusan National University) ;
  • Kim, Min-Soo (Bioindustrial Process Center, Korea Research Institute of Bioscience and Biotechnology)
  • 양희종 (한국생명공학연구원 생물산업공정센터) ;
  • 정성엽 (한국생명공학연구원 생물산업공정센터) ;
  • 최낙식 (한국생명공학연구원 생물산업공정센터) ;
  • 안극현 (한국생명공학연구원 생물산업공정센터) ;
  • 박찬선 (한국생명공학연구원 생물산업공정센터) ;
  • 윤병대 (한국생명공학연구원 생물산업공정센터) ;
  • 유연우 (아주대학교 분자과학기술사업단) ;
  • 안순철 (부산대학교 의과대학 미생물학 및 면역학교실) ;
  • 김민수 (한국생명공학연구원 생물산업공정센터)
  • Received : 2010.09.08
  • Accepted : 2010.11.16
  • Published : 2010.11.30

Abstract

Neohesperidin is a natural new nutrition sweetener, widely existing in plants of dry citrus peel, which can be derived from extraction. Since the sweetness is 1,300-1,500 times greater than that of sugar, neohesperidin are widely used in fruit juices, wines, beverages, bakeries and pharmaceutical formulations, and are particularly suitable for consumption by diabetic patients. However, the yield of extraction from citrus peel waste is very low. In this study optimal yield conditions were determinedusing response surface methodology (RSM) in order to increase the neohesperidin extraction yield. The critical factors for maximum extraction yield were selected extraction pressure ($x_1$), extraction time ($x_2$), and concentration of ethanol ($x_3$). As a result, the extraction yield was improved when the extracting pressure increased. The extraction yield also increased in a time-dependent manner. When adding ethanol as an assistance solvent to the supercritical carbon dioxide, extraction yield was increased as more ethanol concentration was added. Finally, the extraction yield of neohesperidin was improved to about 162.22% compared to ethanol extraction as a conventional method.

감귤류는 다양한 기능성과 약효로써의 효능이 입증되면서 소비가 증가하고 있으나, 감귤 가공 후 부산물인 감귤박은 폐기물로써 해양에 투기되고 있어 부산물의 처리가 시급한 실정이다. 따라서 폐감귤박을 이용한 고감도 감미료의 생산 원료인 neohesperidin을 추출하여 폐감귤박을 효율적 이용을 도모하였으나 상당히 미비한 추출수율로 효율성이 감소하였다. 이러한 추출 수율의 문제점을 해결하기 위하여 반응표면 분석법을 이용하여 감귤가공부산물로부터 neohesperidin의 추출 수율 증진 위한 추출조건의 최적화 연구를 수행하였다. 추출 조건 중 초임계 유체 추출의 수율 증진에 영향을 주는 추출 압력($x_1$), 추출 시간($x_2$), 보조용매의 농도($x_3$)를 주요 인자로 선정하였다. 선정한 인자를 반응표면 분석법에 적용하여 추출 수율의 최적조건을 탐색하였으며, 그 결과 추출압력이 증가하면서 추출의 수율은 크게 향상되었고, 또한 추출 시간이 길어질수록 추출 수율 또한 증가함을 확인하였다. 또한 초임계 이산화탄소에 ethanol을 보조용매로 첨가할 경우 보조용매의 농도가 높을수록 수율은 급격하게 증가하여, 최종적으로 162.22%까지 neohesperidin의 추출 수율을 증진할 수 있었다.

Keywords

References

  1. Bellocco, E., D. Barreca, G. Lagana, U. Leuzzi, E. Tellone, S. Ficarra, A. Kotyk, and A. Galtieri. 2009. Influence of L-rhamnosyl-D-glucosyl derivatives on properties and biological interaction of flavonoids. Mol. Cell Biochem. 321, 165-171. https://doi.org/10.1007/s11010-008-9930-2
  2. Braddock, R. J. and P. G. Crandall. 1981. Carbohydrate fiber from orange albedo. J. Food Sci. 46, 650-655. https://doi.org/10.1111/j.1365-2621.1981.tb04936.x
  3. Cha, J. Y., S. Y. Kim, S. J. Jeong, and Y. S. Cho. 1999. Effects of hesperetin and narigenin on lipid concentration in orotic acid treated mice. Korean J. Life Sci. 9, 389-394.
  4. Chen, Y. T., R. L. Zheng, Z. L. Jia, and Y. Ju. 1990. Flavonoids as superoxide scavengers and antioxidants. Free Radic. Biol. Med. 9, 19-21.
  5. Francis, A. R., T. K. Shetty, and R. K. Bhattacharya. 1989. Modulating effect of plant flavonoids on the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine. Carcinogenesis 10, 1953-1935. https://doi.org/10.1093/carcin/10.10.1953
  6. Guengerich, F. P. and D. H. Kim. 1990. In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis 11, 2275-2279. https://doi.org/10.1093/carcin/11.12.2275
  7. Hawthorne, S. B. and D. J. Miller. 1994. Direct comparison of soxhlet and low-and high-temperature supercritical $CO_2$ extraction efficiencies of organics from environmental solids. Anal. Chem. 66, 4005-4012. https://doi.org/10.1021/ac00094a024
  8. Horowitz, R. M. and B. Gentil. 1963. Dihydrochalcone derivatives and their use as sweetening agents. US Patent. 3,087,821.
  9. Itoh, K., M. Masuda, S. Naruto, K. Murata, and H. Matsuda. 2009. Antiallergic activity of unripe Citrus hassaku fruits extract and its flavanone glycosides on chemical substance-induced dermatitis in mice. J. Nat. Med. 63, 443-50. https://doi.org/10.1007/s11418-009-0349-1
  10. Itoh, K., N. Hirata, M. Masuda, S. Naruto, K. Wakabayashi, and H. Matsuda. 2009. Inhibitory effects of Citrus hassaku extract and its flavanone glycosides on melanogenesis. Biol. Pharm. Bull. 32, 410-415. https://doi.org/10.1248/bpb.32.410
  11. Jang, S. Y., S. M. Woo, C. W. Park, I. W. Choi, and Y. J. Jeong. 2010. Characteristics of alcohol fermentation of citrus fruit hydrolyzates. J. Korean Soc. Food Sci. Nutr. 39, 1236-1241. https://doi.org/10.3746/jkfn.2010.39.8.1236
  12. Jeong, S. M., S. Y. Kim, H. R. Park, and S. C. Lee. 2004. Effect of far-infrared radiation on the antioxidant activity of extracts from citrus unshiu peels. J. Korean Soc. Food Sci. 38, 462-469.
  13. Jeong, W. S., S. W. Park, and S. K. Chung. 1997. The antioxidant activity of Korean citrus unshiu peels. Food Biotechnol. 6, 292-296.
  14. Kim, Y. D., W. J. Ko, K. S. Koh, Y. J. Jeon, and S. H. Kim. 2009. Composition of flavonoids and antioxidative activity from juice of Juju citrus fruits during maturation. Korean J. Nutr. 42, 278-290. https://doi.org/10.4163/kjn.2009.42.3.278
  15. Laura, B. 1998. Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56, 317-333.
  16. Lee, A., J. H., S. H. Kim, S. Y. Kim, and C. S. Jeong. 2009. Protective effects of neohesperidin and poncirin isolated from the fruits of Poncinus trifoliate on potential gastric disease. Phytother. Res. 23, 1748-1753. https://doi.org/10.1002/ptr.2840
  17. Lee, C. H. and Y. J. Kang. 1997. HPLC analysis of some flavonoids in citrus fruits. Korean J. Postharvest Sci. Technol. 4, 181-187.
  18. Lim, S. B. and M. K. Jwa. 2003. Optimization in extraction conditions of carotenoids from Citrus unshiu press cake by supercritical carbon dioxide. Korean J. Food. SCI. Technol. 35, 1104-1109.
  19. Miyake, T., K. Yamamoto, N. Tsujihara, and T. Osawa. 1998. Protective effect of lemon flavonoids on oxidative stress in diabetic rats. Lipids 33, 689-695. https://doi.org/10.1007/s11745-998-0258-y
  20. Monforte, M. T., A. Trovato, S. Kirjavanien, A. M. Forestieri, E. M. I. Galati, R. B. Curto. 1995. Biological effects of hesperidin, a citrus flavonoid hypolipidemic activity on experimental hypercholesterolemia in rat. Famco 50, 595-599.
  21. Perfetti, G. A., F. L. Jr. Joe, T. Fazio, and S. W. Page. 1988. Liquid chromatographic methodology for the characterization of orange juice. J. Assoc. Off. Anal. Chem. 71, 469-473.
  22. Rhyu, M. R., E. Y. Kim, I. Y. Bae, and Y. K. Park. 2002. Contents of naringin, hesperidin and neohesperidin in premature Korean citrus fruits. Korean J. Food Sci. Technol. 31, 132-135.
  23. Son, H. S., H. S. Kim, T. B. Kwon, and J. S. Ju. 1992. Isolation, purification and hypotensive effects of bioflavonoids in Citrtus sinensis. J. Korean Soc. Food Nutr. 21, 136-142.
  24. Son, H. S., S. H. Lee, Y. B. Park, K. H. Bae, K. H. Son, T. S. Jeong, and M. S. Choi. 1999. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methylgluraryl CoA reductase and acyl CoA cholesterol transferase are lower in rat fed citrus peel extract or a mixture of citrus bioflavonoids. J. Nutr. 129, 1182-1185.
  25. Wang, C., Y Pan, G. Fan, Y. Chai, and Y. Wu. 2010. Application of an efficient strategy based on MAE, HPLC-DAD-MS/MS and HSCCC for the rapid extraction, identification, separation and purification of flavonoids from Fructus Aurantii Immaturus. Biomed. Chromatogr. 24, 235-244. https://doi.org/10.1002/bmc.1278

Cited by

  1. Compositional Differences of Ojeok-san (Wuji-san) Decoctions Using Pressurized or Non-pressurized Methods for Variable Extraction Times vol.15, pp.2, 2012, https://doi.org/10.3831/KPI.2012.15.2.024
  2. Optimization of Extraction Conditions for Ethanol Extracts from Citrus unshiu Peel by Response Surface Methodology vol.18, pp.5, 2011, https://doi.org/10.11002/kjfp.2011.18.5.755
  3. Comparative Study of Pyungwi-san extracted by Different Decoction Extractor and Extraction Time vol.27, pp.6, 2012, https://doi.org/10.6116/kjh.2012.27.6.63