DOI QR코드

DOI QR Code

Influence of Nitrate on Growth, Chlorophyll Content, Content and Activity of Rubisco and Rubisco Activase of Tobacco Plant Treated with Cadmium in vitro

Cadmium을 처리하여 기내 배양한 담배 식물의 생장, 엽록소 함량 및 rubisco와 rubisco activase의 함량과 활성에 미치는 질산염의 영향

  • Received : 2010.08.25
  • Accepted : 2010.10.28
  • Published : 2010.11.30

Abstract

Influence of nitrate on growth, chlorophyll content, content and activity of rubisco and rubisco activase of tobacco plant cultured on MS medium treated with cadmium in vitro was studied. In vitro growth and chlorophyll content reduced at 0.2 mM Cd was recovered by nitrate and this recovery was most significant at 80 mM nitrate. Rubisco content at 80 mM nitrate was more increased compared to that at other concentrations. A similar change was also shown in rubisco activity. These resultsindicate that the activation and induction of rubisco reduced by Cd were recovered by nitrate. The degree of intensity of 55 and 15 kD polypeptides identified as the large and small subunits of rubisco by SDS-PAGE analysis at 80 mM nitrate was significantly higher than that at other concentrations. The content and activity of rubisco activase at 80 mM nitrate was significantly increased than that at other concentrations. These data suggest that the recovery effects of rubisco by nitrate may be associated with rubisco activase.

Cd을 처리하여 기내 배양한 담배 식물의 생장과 엽록소 함량, rubisco와 rubisco activase의 함량과 활성에 미치는 질산염의 영향을 연구하였다. Cd에 의해 억제되었던 담배 식물의 생장과 엽록소의 함량은 질산염에 의해 회복되었으며, 80 mM 질산염에서 회복 효과가 가장 높았다. 80 mM 질산염에서의 rubisco의 함량이 타 농도에서 보다 현저하게 증가하였으며, rubisco의 활성 또한 rubisco의 함량과 같은 변화를 보였다. 이 결과들은 Cd에 의해 감소된 rubisco의 함량과 활성이 질산염에 의해 회복되었음을 의미한다. SDS-PAGE의 결과, 55 kD와 15 kD의 large subunit와 small subunit의 강도는 타 농도에서 보다 80 mM 질산염에서 현저하게 증가하였다. Rubisco activase의 함량과 활성을 측정한 결과, 80 mM 질산염에서의 rubisco activase의 함량은 타 농도에서 보다 현저하였으며, 이의 활성은 함량과 같은 양상을 나타내어, rubisco에 대한 질산염에 의한 회복 현상이 rubisco activase와 관련 있음을 추측하게 한다.

Keywords

References

  1. Baszynski, T., L. Wajda, D. Wolinska, Z. Krupa, and A. Tukendorf. 1989. Photosynthetic activities of cadmium-treated tomato plants. Physiol. Plant 48, 365-370.
  2. Chaffei, C., K. Pageau, A. Suzuki, H. Gouia, M. H. Ghorbel, and C. Masclaux-Daubresse. 2004. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol. 45, 1681-1693. https://doi.org/10.1093/pcp/pch192
  3. Chen, Y. and A. J. Huerta. 1997. Effect of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings. J. Plant Nutrition 20, 845-856. https://doi.org/10.1080/01904169709365300
  4. Cheng, L. and L. H. Fuchigami. 2000. Rubisco activation state decreases with increasing nitrogen content in apple leaves. J. Exp. Bot. 51, 1687-1694. https://doi.org/10.1093/jexbot/51.351.1687
  5. Choudhary, M., L. D. Bailey, and C. A. Grant. 1994. Effect of zinc on cadmium concentration the tissue of durum wheat. Can. J. Plant Sci. 74, 549-552. https://doi.org/10.4141/cjps94-099
  6. Chugh, L. K. and S. K. Sawhney. 1999. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol. Biochem. 37, 297-303. https://doi.org/10.1016/S0981-9428(99)80028-X
  7. Di Cagno, R., L. Guidi, L. De Gara, and G. F. Soldatini. 2001. Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytologist 151, 627-636. https://doi.org/10.1046/j.1469-8137.2001.00217.x
  8. Evans, J. R. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol. 72, 297-302. https://doi.org/10.1104/pp.72.2.297
  9. Finkemeier, I., C. Kluge, A. Metwally, M. Georgi, N. Grotjohann, and K. J. Dietz. 2003. Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. Plant Cell Environ. 26, 821-833. https://doi.org/10.1046/j.1365-3040.2003.01014.x
  10. Gerendas, J., Z. Zhu, R. Bendixen, R. G. Ratcliffe, and B. Sattelmacher. 1997. Physiological and biochemical processes related to ammonium toxicity in higher plants. Zeitschrift Pflanzenernährung Bodenkunde 160, 239-251. https://doi.org/10.1002/jpln.19971600218
  11. Greger, M. and E. Ogren. 1991. Direct and indirect effects of $Cd^2+$ on photosynthesis in sugar beet (Beta vulgaris). Physiol. Plant. 83, 129-135. https://doi.org/10.1111/j.1399-3054.1991.tb01291.x
  12. Inskeep, W. P. and P. R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 77, 483-485. https://doi.org/10.1104/pp.77.2.483
  13. Ishimaru, K., N. Kobayashi, K. Ono, M. Yano, and R. Ohsugi 2001. Are contents of rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics. J. Exp. Bot. 52, 1827-1833. https://doi.org/10.1093/jexbot/52.362.1827
  14. Joy, K. W. 1988. Ammonia, glutamine and asparagine: a carbon nitrogen interface. Can. J. Bot. 66, 2103-2109.
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  16. Lasa, B., M. Aleu, B. Gonzalez-Moro, C. Lamsfus, and P. M. Aparicio-Tejo. 2000. Effects of low and high levels of magnesium on the response of sunflower plants grown with ammonium and nitrate. Plant Soil 225, 167-174. https://doi.org/10.1023/A:1026568329860
  17. Lee, K. R. and K. S. Roh. 2003. Influence of cadmium on rubisco activation in Canavalia ensiformis L. leaves. Biotech. Biopro. Eng. 8, 94-100. https://doi.org/10.1007/BF02940263
  18. Lucero, H. A., C. S. Andreo, and R. H. Vallejos. 1976. Sulphydryl groups in photosynthetic energy conservation. III. Inhibition of photophosphorylation in spinach chloroplasts by $CdCl_2$. Plant Sci. Lett. 6, 309-313. https://doi.org/10.1016/0304-4211(76)90100-0
  19. Machler, F., A. Oberson, A. Grub, and J. Nosberger. 1988. Regulation of photosynthesis in nitrogen-deficient wheat seedlings. Plant Physiol. 87, 46-49. https://doi.org/10.1104/pp.87.1.46
  20. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Nakano, H., A. Makino, and T. Mae. 1997. The effect of elevated partial pressure of $CO_2$ on the relationship between photosynthetic capacity and content in rice leaves. Plant Physiol. 115, 191-198.
  22. Olmos, E., J. R. Martinez-Solano, A. Piqueras, and E. Hellin. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot. 54, 291-301. https://doi.org/10.1093/jxb/54.381.291
  23. Ouariti, O., N. Boussama, M. Zarrouk, A. Cherif, and M. H. Ghorbal. 1997. Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45, 1343-1350. https://doi.org/10.1016/S0031-9422(97)00159-3
  24. Padmaja, K., D. D. K. Parsad, and A. R. K. Parsad. 1990. Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24, 399-404.
  25. Pankovic, D., M. Plesnicar, I. Arsenijevic-Maksimovic, N. Petrovic, Z. Sakac, and R. Kastori. 2000. Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann. Bot. 86, 841-847. https://doi.org/10.1006/anbo.2000.1250
  26. Pietrini, F., M. A. Iannelli, S. Pasqualini, and A. Massacci. 2003. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol. Preview 133, 829-837. https://doi.org/10.1104/pp.103.026518
  27. Portis, A. R. Jr. 1990. Rubisco activase. Biochim. Biophys. Acta 1015, 15-28. https://doi.org/10.1016/0005-2728(90)90211-L
  28. Portis, A. R. Jr. 2003. Rubisco activase: Rubisco's catalytic chaperone. Photosynth. Res. 75, 11-27. https://doi.org/10.1023/A:1022458108678
  29. Prasad, M. N. V. 1995. Cadmium toxity and tolerance in vascular plants. Environ. Exp. Bot. 35, 525-545. https://doi.org/10.1016/0098-8472(95)00024-0
  30. Quick, W. P., U. Schurr, R. Scheibe, E-D. Schulze, S. R. Rodermel, L. Bogorad, and M. Stitt. 1991. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. I. Impact on photosynthesis in ambient growth conditions. Planta 183, 542-554.
  31. Racker, E. 1962. Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 5, 266-270. https://doi.org/10.1016/S0076-6879(62)05216-7
  32. Ramage, M. C. and R. R. Williams. 2002. Inorganic nitrogen requirements during shoot organogenesis in tobacco leaf discs. J. Exp. Bot. 53, 1437-1443. https://doi.org/10.1093/jexbot/53.373.1437
  33. Robinson, S. P. and A. R. Portis Jr. 1989. Adenosine triphosphate hydrolysis by purified rubisco activase. Arch. Biochem. Biophys. 268, 93-99. https://doi.org/10.1016/0003-9861(89)90568-7
  34. Roh, K. S. and H. S. Chin. 2005. Cadmium toxicity and calcium effect on growth and photosynthesis of tobacco. J. Life Sci. 15, 453-460. https://doi.org/10.5352/JLS.2005.15.3.453
  35. Roh, K. S., I. S. Kim, B. W. Kim, J. S. Song, H. S. Chung, and S. D. Song. 1997. Decrease in carbamylation of rubisco by high $CO_2$ concentration is due to decrease of rubisco activase in kidney bean. J. Plant Biol. 40, 73-79. https://doi.org/10.1007/BF03030237
  36. Sandalio, L. M., H. C. Dalurzo, M. Gomez, M. C. Romero-Puertas, and L. A. Del Rio. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52, 2115-2126.
  37. Sanita di Toppi, L. and R. Gabbrielli. 1999. Response to cadmium in higher plants. Environ. Exp. Bot. 41, 105-130. https://doi.org/10.1016/S0098-8472(98)00058-6
  38. Sathyanarayana, B. N. and J. Blake. 1994. The effect of nitrogen sources and initial pH of the media with or without buffer on in vitro rooting of jack fruit. pp. 77-82, In Lumsden, P. J., J. R. Nicholas, and W. J. Davies (eds.), Physiology, Growth and Development of Plants in Culture. Kluwer Academic Publishers, Netherlands.
  39. Shah, K. and R. S. Dubey. 1995. Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol. Biochem. 33, 577-584.
  40. Shoeran, I. S., H. R. Signal, and R. Singh. 1990. Effect of cadmium and nickel on photosynthesis and the enzyme of the photosynthetic carbon reduction cycle in pigeopea (Cajanus cajan L.). Photosynth. Res. 23, 345-351. https://doi.org/10.1007/BF00034865
  41. Siedlecka, A. and Z. Krupa. 1996. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 34, 833-841.
  42. Skorzynska-Polit, E. and T. Baszynski. 1995. Some aspects of runner bean plant response to cadminm at different stages of the primary leaf growth. Acta Soc. Bot. Pol. 64, 165-170. https://doi.org/10.5586/asbp.1995.023
  43. Somashekaraiah, B. V., K. Padmaja, and A. R. K. Prasad. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgarts): involvement of lipid peroxides in chlorophyll degradation. Physiol. Plant 85, 85-89. https://doi.org/10.1111/j.1399-3054.1992.tb05267.x
  44. Stiborova, M. 1988. $Cd^2+$ ions affect the quaternary structure of ribulose-1.5 bisphosphate carboxylase from barley leaves. Biochemia Physiologia Pflanzen 183, 371-378. https://doi.org/10.1016/S0015-3796(88)80045-3
  45. Stobart, A., K, W. T. Griffiths, I. Ameen-Bukhari, and R. P. Sherwood. 1985. The effect of $Cd^2+$ on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum 63, 293-298. https://doi.org/10.1111/j.1399-3054.1985.tb04268.x
  46. Trewavas, A. J. 1983. Nitrate as a plant hormone. In Jackson, M. B. (ed.), British Plant Growth Regulator Group Monograph Vol. 9, Oxford, British.
  47. Van Bruwaene, R., R. Kirchmann, and R. Inpens. 1984. Cadmium contamination in agriculture and zoo technology. Experientia 40, 43-52. https://doi.org/10.1007/BF01959101
  48. Wang, X. and F. E. Below. 1996. Cytokinins in enhanced growth and tillering of wheat induced by mixed nitrogen source. Crop Science 36, 121-126. https://doi.org/10.2135/cropsci1996.0011183X003600010022x
  49. Wang, Z. Y., G. W. Snyder, B. D. Esau, A. R. Portis Jr., and W. L. Ogren. 1992. Species-dependent variation in the interaction of substrate-bound ribulose-1,5-bisphosphate carboxylase/oxygenase and rubisco activase. Plant Physiol. 100, 1858-1862. https://doi.org/10.1104/pp.100.4.1858
  50. Weigel, H. J. 1985. Inhibition of photosynthetic reactions of isolated chloroplasts by cadmium. J. Plant Physiol. 119, 179-189. https://doi.org/10.1016/S0176-1617(85)80176-0
  51. Weigel, H. J. 1985. The effect of $Cd^2+$ on photosynthetic reactions of mesophyll protoplasts. Physiol. Plant 63, 192-200. https://doi.org/10.1111/j.1399-3054.1985.tb01902.x
  52. Yamashita, T. 1986. Changes in ribulose 1,5-bisphosphate carboxylase concentration due to external nitrogen supply. Ann. Bot. 58, 277-280.
  53. Yang, Y. J., L. M. Cheng, and Z. H. Liu. 2007. Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci. 172, 632-639. https://doi.org/10.1016/j.plantsci.2006.11.018
  54. Zhang, N. and A. R. Portis Jr. 1999. Mechanism of light regulation of rubisco: A specific role for the larger rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. USA. 96, 9438-9443. https://doi.org/10.1073/pnas.96.16.9438
  55. Zhang, N., P. Schürmann, and A. R. Portis Jr. 2001. Characterization of the regulatory function of the 46-kD isoform of rubisco activase from Arabidopsis. Photosynth. Res. 68, 29-37. https://doi.org/10.1023/A:1011845506196

Cited by

  1. Sterilization of Neurospora Crassa by Noncontacted Low Temperature Atmospheric Pressure Surface Discharged Plasma with Dielectric Barrier Structure vol.22, pp.2, 2013, https://doi.org/10.5757/JKVS.2013.22.2.55