DOI QR코드

DOI QR Code

Study on the Characteristics of Nitrous Oxide Catalytic Decomposition for Propellant Applications

추진제 응용을 위한 아산화질소의 촉매 분해 특성 연구

  • 김태규 (조선대학교, 항공우주공학과) ;
  • 용승주 (조선대학교, 항공우주공학과) ;
  • 박대일 (조선대학교, 항공우주공학과)
  • Published : 2010.04.01

Abstract

The study on the characteristics of nitrous oxide catalytic decomposition was carried out to utilize the nitrous oxide as a propellant. The Pt, Ir and Ru were synthesized to select a high performance catalyst for the nitrous oxide decomposition reaction. The respective catalyst precursors were loaded in the $Al_2O_3$ support using an wet impregnation method. The $N_2O$ conversion as a variation of space velocity and reaction temperature was measured using a tubular reactor. The catalyst loss was measured to evaluate the durability of catalysts after the reaction at $800^{\circ}C$ for 2 hours. The $N_2O$ conversion was increased at the decrease of space velocity and at the increase of temperature. The Ru/$Al_2O_3$ catalyst had the highest $N_2O$ conversion at low temperature and the best durability.

추진제로써 아산화질소를 활용하기 위해 아산화질소의 촉매 분해 특성에 대한 연구를 수행하였다. 아산화질소 분해 반응을 위한 고성능 촉매를 선정하기 위해 Pt, Ir, Ru 촉매를 합성하였다. 촉매 합성을 위해 각각의 촉매 전구체를 함침법을 이용하여 $Al_2O_3$ 지지체에 담지하였다. 제조된 촉매는 관형 반응기를 사용하여 공간속도와 반응온도에 따른 $N_2O$ 전환율을 가스 분석을 통해 측정하였다. 또한 촉매 내구성을 판단하기 위해 $800^{\circ}C$에서 2시간 동안 반응한 후 촉매 유실량을 측정하였다. $N_2O$ 전환율은 공간속도가 낮을수록 반응온도가 높을수록 높았고, Ru/$Al_2O_3$ 촉매가 낮은 온도에서 가장 높은 $N_2O$ 전환율을 보였고 내구성도 가장 우수하였다.

Keywords

References

  1. Zakirov, V. and Sweeting, M., "Nitrous as a Rocket Propellant", Acta Astronauica Vol. 48, No. 5-12, 2001, pp. 353~362. https://doi.org/10.1016/S0094-5765(01)00047-9
  2. Zakirov, V., Sweeting, M., Goeman, V., Park, W. and Lawrence, T., "Surrey Research on Nitrous oxide Catalytic Decomposition for Space Applications", 19th AIAA/USE Conference on Small Satellite, 2006, SSC00-XI06.
  3. Lohner, K., Dyer, J., Doran, E., Dunn, Z., Krieger, B. Decker, V., Wooley, E., Sadhwani, A., Cantwell, B. and Kenny, T., "Design and Development of a Sub-Scale Nitrous Oxide Monopropellant Gas Generator", 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 2007.
  4. Zakirov, V., Li, L. and Ke, G., "$N_2O$ Propulsion Research at Tsinghua: 2003", 2nd Int. Conference on Green Propellant for Space Propulsion", June 2004.
  5. 진정근, Kosdaulefov, A., 안성용, 권세진, "$N_2O$ 단일 추진제 추력기 개발을 위한 촉매 분해 시험", 한국추진공학회 2009년도 추계학술대회, 2007, pp. 269~272.
  6. 김태규, 용승주, “단일 추진제 추력기를 위한 아산화질소 분해 특성 연구", 한국항공우주학회 2009년도 추계학술대회, 2007, pp. 517~520.
  7. 용승주, 박대일, 김태규, “아산화질소 촉매분해 특성 연구", 한국추진공학회 2009년도 추계학술대회, 2007, pp. 58~61.
  8. Lohner, K., Dyer, J., Doran, E., Dunn, Z. and Zilliac, G., "Fuel Regression Rate Characterization Using a Laboratory Scale Nitrous Oxide Hybrid Propulsion System", 42rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 2006.
  9. 유우준, 김수종, 김진곤, 장석필, "다공성 매질 접근법을 적용한 하이브리드 로켓 $N_2O$ 촉매점화기의 열적 현상", 한국항공우주학회지 제34권 제9호, 2006, pp. 89~96.
  10. Kapteijn, F., Rodriguez-Mirasol, J. and Moulijn, J. A., "Heterogeneous catalytic decomposition of nitrous oxide", Applied Catalysis B: Environment, Vol. 9, 1996, pp. 25~64. https://doi.org/10.1016/0926-3373(96)90072-7
  11. Hill, C. G., "An Introduction to chemical Engineering Kinetics & Reactor Design", John Wiley & Sons, New York, 1977.
  12. 전학제, 서곤, "촉매개론", 제4판, 한림원, 2002.
  13. Arai, H. and Machida, M., "Recent Progress in High-Temperature Catalytic Combustion", Catalysis Today, Vol. 10, 1991, pp. 81~94. https://doi.org/10.1016/0920-5861(91)80076-L
  14. Zhu, S., Wang, X., Wang, A., Cong, Y. and Zhang, T., "A Novel Ir-hexaalumiate Catalyst for N2O as a Propellant", Chem. Commun, 2007, pp. 1695~1697. https://doi.org/10.1039/b702502e

Cited by

  1. A Study on the Effect of Fluidizing Media on the N2O Production in Fluidized Bed Incineration of Sewage Sludge vol.20, pp.4, 2014, https://doi.org/10.7464/ksct.2014.20.4.390