DOI QR코드

DOI QR Code

Palmitic acid inhibits inflammatory responses in lipopolysaccharide-stimulated mouse peritoneal macrophages

  • Lee, Ju-Young (Department of Herb Science Shinsung College) ;
  • Lee, Hye-Ja (Department of Herb Science Shinsung College) ;
  • Jeong, Ji-Ahn (Department of Herb Science Shinsung College) ;
  • Jung, Ji-Wook (Department of Herbal Medicinal Resource, College of Health and Welfare, Daegu Haany University)
  • 발행 : 2010.03.31

초록

Palmitic acid (PA) is one of free fatty acids, which is found from Gaultheria itoana Hayata and Sarcopyramis nepalensis. Although PA has a variety of pharmacological effects including mediates hypothalamic insulin resistance, induces IP-10 expression, and promote apoptotic activities, the anti-inflammatory mechanism of PA in mouse peritoneal macrophages remains unclear. In this study, we showed that PA exerted an anti-inflammatory action through suppression the production of tumor necrosis factor-$\alpha$, interleukin-6, cyclooxygenases-2 and nitric oxide in lipopolysaccaride-stimulated mouse peritoneal macrophages. Our study suggests an important molecular mechanism of PA, which might explain its beneficial effect in the regulation of inflammatory reactions.

키워드

참고문헌

  1. Beutler B. (1995) TNF, immunity and inflammatory disease, lessons of the past decade. J. Invest. Med. 43, 227-235.
  2. Beutler B. (2000) TNF, immunity and inflammatory disease: lessons of the past decade. Curr. Opin. Immuno. 12, 20-26. https://doi.org/10.1016/S0952-7915(99)00046-1
  3. Belosludtsev K, Saris NE, Andersson LC, Belosludtseva N, Agafonov A, Sharma A, Moshkov DA, Mironova GD. (2006) On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and $Ca2^+$ in mitochondria. J. Bioenerg. Biomembr. 38, 113-120. https://doi.org/10.1007/s10863-006-9010-9
  4. Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, Lefevre AL, Cruciani-Guglielmacci C, Magnan C, Yu F, Niswender K, Irani BG, Holland WL, Clegg DJ. (2009) Palmitic acid mediates hypothalamic insulin resistance by altering PKCtheta subcellular localization in rodents. J. Clin. Invest. 119, 2577-2589. https://doi.org/10.1172/JCI36714
  5. Chen CY, Lin RJ, Huang JC, Wu YH, Cheng MJ, Hung HC, Lo WL. (2009) Chemical constituents from the whole plant of Gaultheria itoana Hayata. Chem. Biodivers 6, 1737-1743. https://doi.org/10.1002/cbdv.200800270
  6. Dinarello C A. (2000) Proinflammatory cytokines. Chest 118, 503-508. https://doi.org/10.1378/chest.118.2.503
  7. Grosjean SA, Arstall MA, Mitchell RN, Klappacher GW, Kelly RA, Pfeffer MA, Pfeffer JM. (1999) Inducible nitric oxide synthase and tumor necrosis factor in animal models of myocardial necrosis induced by coronary artery ligation or isoproterenol injection. J. Card. Fail. 5, 236-245. https://doi.org/10.1016/S1071-9164(99)90008-8
  8. Harbrecht BG., Billiar TR, StadlerA, Demetris AJ, Ochoa BJ, Curran RD, Simmons RL. (1992) Nitric oxide synthesis serves to reduce hepatic damage during acute murine endotoxemia. Crit. Care Med. 20, 1568-1574. https://doi.org/10.1097/00003246-199211000-00015
  9. Leiro JM, Alvarez E, Arranz JA., Cano E, Orallo F. (2004) Antioxidant activity and inhibitory effects of hydralazine on inducible NOS/COX-2 gene and protein expression in rat peritoneal macrophages. Immunopharmacol. 4, 163-177. https://doi.org/10.1016/j.intimp.2003.10.004
  10. MacMicking J, Xie QW, Nathan C. (1997) Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  11. Medzhitov R, Janeway CA Jr. (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 9, 295-298.
  12. Minghetti L, Levi G. (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54, 99-125. https://doi.org/10.1016/S0301-0082(97)00052-X
  13. Morita I, SchindlerM, Regier MK, Otto JC, Hori T, KeWitt DL and Smith WL. (1995) Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. J. Biol. Chem. 270, 10902-10908. https://doi.org/10.1074/jbc.270.18.10902
  14. Narumi S, Finke JH, Hamilton TA. (1990) Interferon gamma and interleukin-2 synergize to induce selective monokine expression in murine peritoneal macrophages. J. Biol. Chem., 265, 7036-7041.
  15. Otta JC And Smith WL. (1995) Prostaglandin endoperoxide synthases-1 and -2. J. Lipid Mediat. Cell Signal. 12, 139-156. https://doi.org/10.1016/0929-7855(95)00015-I
  16. Parrillo JE. (1993) Pathogenetic mechanisms of septic shock. N. Engl. J. Med., 328, 1471-1477. https://doi.org/10.1056/NEJM199305203282008
  17. Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P. (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc. Res. 28, 34-39. https://doi.org/10.1093/cvr/28.1.34
  18. Pfeilschifter J, Muhl H. (1999) Immunopharmacology: anti-inflammatory therapy targeting transcription factors. Eur. J. Pharmacol. 30, 237-245.
  19. Stark LA, Din FV, Zwacka RM, Dunlop MG. (2001) Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirinmediated apoptosis in colon cancer cells. FASEB J. 15, 1273-1275. https://doi.org/10.1096/fj.00-0529fje
  20. Stevens C, Walz G, Singaram C. (1992) Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 expression in inflammatory bowel disease. Dig. Dis. Sci. 37, 818-826. https://doi.org/10.1007/BF01300378
  21. Tegeder I, Pfeilschifter J, Geisslinger G. (2001) Cyclooxygenase- independent actions of cyclooxygenase inhibitors. FASEB J. 15, 2057-2072. https://doi.org/10.1096/fj.01-0390rev
  22. Vallance P, Moncada S. (1993) Role of endogenous nitric oxide in septic shock. New Horiz. 1, 77-86.
  23. Vane JR, Bakhle YS and Botting RM. (1998) Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97-120. https://doi.org/10.1146/annurev.pharmtox.38.1.97
  24. Wallace JL. (1999) Distribution and expression of cyclooxygenase (COX) isoenzymes, their physiological roles, and the categorization of nonsteroidal antiinflammatory drugs (NSAIDs). Am. J. Med. 107, 11S- 16S; discussion 16S-17S. https://doi.org/10.1016/S0002-9343(99)00363-0
  25. Wang YY, Chen HD, Liao M, Ruan HL, Pi HF, Zhang YH. (2009) Studies on the chemical constituents of Sarcopyramis nepalensis. Zhong Yao Cai. 32, 1395- 1397.
  26. Weinberg JB, Misukonis MA, Shami PJ, Mason SN, Sauls DL, Smith GK, McDonald B, Bachus KE. (1995) Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood 86, 1184-1195.