DOI QR코드

DOI QR Code

A Novel Synthesis and Photonic Effect of Fe-CNT/TiO2 Composites by Controlling of Carbon Nanotube Amounts

  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2010.03.27

Abstract

Titanium dioxide ($TiO_2$) particles deposited on different quantitative Fe-treated carbon nanotube (CNT) composites with high photocatalytic activity of visible light were prepared by a modified sol-gel method using TNB as a titanium source. The composites were characterized by BET, XRD, SEM, TEM and EDX, which showed that the BET surface area was related to the adsorption capacity for each composite. From TEM images, surface and structural characterization of for the CNT surface had been carried out. The XRD results showed that the Fe-ACF/$TiO_2$ composite mostly contained an anatase structure with a Fe-mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in the Fe-CNT/$TiO_2$ composites. The photocatalytic activity of the composites was examined by degradation of methylene blue (MB) in aqueous solution under visible light, which was found to depend on the amount of CNT. The highest photocatalytic activity among the different composites was related to the optimal content of CNT in the Fe-CNT/$TiO_2$ composites. In particular, the photocatalytic activity of the Fe-CNT/$TiO_2$ composites under visible light was better than that of the CNT/$TiO_2$ composites due to the introduction of Fe particles.

Keywords

References

  1. P. M. Ajayan and J. M. Tour, Nature, 447, 1066 (2007). https://doi.org/10.1038/4471066a
  2. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  3. F. J. Zhang, M. L. Chen and W. C. Oh, Kor. J. Mater. Res., 18(11), 583 (2008). https://doi.org/10.3740/MRSK.2008.18.11.583
  4. M. L. Chen, F. J. Zhang and W. C. Oh, J. Kor. Cer. Soc., 45(11), 651 (2008). https://doi.org/10.4191/KCERS.2008.45.1.651
  5. F. J. Zhang, M. L. Chen and W. C. Oh, Kor. Soc. Environ. Eng., 14(1), 32 (2009).
  6. F. J. Zhang, J. Liu, M. L. Chen and W. C. Oh, J. Kor. Cer. Soc., 46(3), 263 (2009). https://doi.org/10.4191/KCERS.2009.46.3.263
  7. L. P. Zhu, G. H. Liao, W. Y. Huang, L. L. Ma, Y. Yang, Y. Yu and S. Y. Fu, Mater. Sci. Eng. B., 163, 194 (2009). https://doi.org/10.1016/j.mseb.2009.05.021
  8. S. Wang, X. L. Shi, G. Q. Shao, X. L. Duan, H. Yang and T.G. Wang, J. Phys. Chem. Solids., 69, 2396 (2008). https://doi.org/10.1016/j.jpcs.2008.04.029
  9. P. Serp, M. Corrias and P. Kalck, Appl. Catal. A: General, 253, 337 (2003). https://doi.org/10.1016/S0926-860X(03)00549-0
  10. L. Andronic and A. Duta, Thin Solid Films, 515, 6294 (2007). https://doi.org/10.1016/j.tsf.2006.11.150
  11. J. Sun and L. Gao, Carbon, 41, 1063 (2003). https://doi.org/10.1016/S0008-6223(02)00441-4
  12. W. D. Wang, P. Serp, P. Kalck and J. L. Faria, Appl. Catal. B: Environ., 56, 305 (2005). https://doi.org/10.1016/j.apcatb.2004.09.018
  13. W. D. Wang, P. Serp, P. Kalck and J. L. Faria, J. Mol. Catal. A: Chem., 235, 194 (2005) https://doi.org/10.1016/j.molcata.2005.02.027
  14. L. Q. Jiang and L. Gao, Carbon, 41, 2923 (2003). https://doi.org/10.1016/S0008-6223(03)00339-7
  15. Y. P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L. A. Riddle, Y. J. Yu and D. L. Carroll, Chem. Mater., 13, 2864 (2001). https://doi.org/10.1021/cm010069l
  16. R. M. Malek Abbaslou, A. Tavassoli, J. Soltan and A. K. Dalai, Appl. Catal. A: General., 367, 47 (2009). https://doi.org/10.1016/j.apcata.2009.07.025
  17. M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones and M. S. Dresselhaus, Nano. Lett., 3, 723 (2003). https://doi.org/10.1021/nl034136h
  18. G. L. Che, B. B. Lakshmi, C. R. Martin and E. R. Fisher, Langmuir, 15, 750 (1999). https://doi.org/10.1021/la980663i
  19. F. J. Zhang, M. L. Chen, C. S. Lim and W. C. Oh, J. Cer. Proc. Res., 10, 600 (2009).
  20. F. A. Cotton and G. Wilkinson. Advanced inorganic chemistry. 5th ed. p. 654-655, John Wiley Sons, Inc, New York (1988).
  21. M. L. Chen, J. S. Bae and W. C. Oh, Anal. Sci Technol., 19(6), 460 (2006).
  22. M. L. Chen, F. J. Zhang and W. C. Oh, New Carbon Mater., 24, 159 (2009). https://doi.org/10.1016/S1872-5805(08)60045-1
  23. T. Sawatsuk, A. Chindaduang, C. Sae-kung, S. Pratontep and G. Tumcharern, Diamond & Related Mater., 18, 524 (2009). https://doi.org/10.1016/j.diamond.2008.10.052
  24. M. Neamtu, A. Yediler, I. Siminiceanu and A. Kettrup, J. Photochem. and Photobiol A: Chem., 161, 87 (2003). https://doi.org/10.1016/S1010-6030(03)00270-3
  25. M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez and S. Esplugas, Appl. Catal. B: Environ., 47, 219 (2004). https://doi.org/10.1016/j.apcatb.2003.09.010
  26. Y. F. Tu, S. Y. Huang, J. P. Sang and X. W. Zou, Mater. Res. Bull., 45, 224 (2010). https://doi.org/10.1016/j.materresbull.2009.08.020