DOI QR코드

DOI QR Code

Effects of Processed Cuttlefish on Lipid and Immunoglobulin Levels in Mice Blood

가공오징어의 섭취가 쥐의 혈중 지질 조성 및 항체 형성 농도에 미치는 영향

  • Jeong, Hyang-Suk (College of Bioscience & Biotechnology, Kangwon National University) ;
  • Ha, Ji-Hye (College of Bioscience & Biotechnology, Kangwon National University) ;
  • Oh, Sung-Ho (College of Bioscience & Biotechnology, Kangwon National University) ;
  • Kim, Seoung-Seop (College of Bioscience & Biotechnology, Kangwon National University) ;
  • Jeong, Myoung-Hoon (College of Bioscience & Biotechnology, Kangwon National University) ;
  • Choi, Geun-Pyo (Dept. of Food Processing & Bakery, Gangwon Provincial University) ;
  • Park, Uk-Yeon (Dept. of Food Processing & Bakery, Gangwon Provincial University) ;
  • Park, Sung-Jin (Dept. of Tourism Food Service Cuisine, Hallym College) ;
  • Lee, Hyeon-Yong (College of Bioscience & Biotechnology, Kangwon National University)
  • 정향숙 (강원대학교 BT특성화학부대학) ;
  • 하지혜 (강원대학교 BT특성화학부대학) ;
  • 오성호 (강원대학교 BT특성화학부대학) ;
  • 김승섭 (강원대학교 BT특성화학부대학) ;
  • 정명훈 (강원대학교 BT특성화학부대학) ;
  • 최근표 (강원도립대학 식품가공제과제빵과) ;
  • 박욱연 (강원도립대학 식품가공제과제빵과) ;
  • 박성진 (한림성심대학 관광외식조리과) ;
  • 이현용 (강원대학교 BT특성화학부대학)
  • Published : 2010.03.31

Abstract

The content levels of taurine, DHA, and EPA of dried cuttlefish powder were $11.67{\pm}6.62\;g/kg$, $3001.11{\pm}11.42\;mg/100\;g$ and $688.13{\pm}10.51\;mg/100\;g$, respectively, which were 10~20% higher than those of the salt processed cuttlefish. After feeding dried and salt processed cuttlefish for 4 weeks, total cholesterol concentrations in mice blood were 81.3 mg/dL and 88.1 mg/dL, respectively, which was higher than 78.9 mg/dL of the control. It was also found that dried cuttlefish increased HDL-cholesterol concentrations to 71.6 mg/dL, compared to 63.1 mg/dL of salt processed cuttlefish. The triglyceride contents of dried sample was higher than that of processed sample. Blood glucose concentrations in mice fed dried or salt processed cuttlefish were 77.7 mg/dL and 90.3 mg/dL, respectively. IgG levels increased to 48.1 ng/mL by feeding the processed cuttlefish, compared to 40.3 ng/mL of the dried cuttlefish. Therefore, by analysis of serum lipid, it can be suggested that processed cuttlefish can improve immune activities through adding taurine and polyunsaturated fatty acids.

오징어의 섭취 시 혈액 내 지질 대사에 미치는 영향을 알아보기 위해 오징어 급여를 통한 실험쥐의 당 농도, 지질성분 분석과 면역 항체변화를 관찰하였다. 각각의 식이를 급여후 혈청 중의 total cholesterol 함량의 경우 대조군은 78.9 mg/dL를 나타낸 반면 건조오징어 급여군은 81.3 mg/dL, 가공오징어 급여군은 88.1 mg/dL로서 시료 투여군이 대조군과 비교하여 소폭 증가를 나타내었다. 실험식이가 종료된 후 실험쥐의 혈청 중 HDL-cholesterol 함량은 대조군이 58.1 mg/dL, 건조오징어 급여군이 71.6 mg/dL, 가공오징어 급여군이 63.1 mg/dL으로 각각 나타났다. 혈청 중 triglyceride 함량의 경우 오징어 건조오징어 급여군이 221.8 mg/dL로 196.6 mg/dL를 나타낸 대조군에 비해 다소 증가한 반면 가공오징어 급여군은 158.3 mg/dL로 감소하였다. 혈액 내 glucose 농도는 대조군 95.4 mg/dL과 비교했을 때 건조오징어 급여군과 가공오징어 급여군이 각각 77.7 mg/dL, 90.3 mg/dL로 측정되었다. 오징어 섭취에 의한 항체 생성능을 알아보기 위한 IgG 수치는 대조군 25.4 ng/mL과 비교했을 때 가공오징어 급여군에서 48.1 ng/mL로써 증가하였다. 실험결과 건조오징어가 가공오징어에 비해 총 콜레스테롤의 함량이 적은 것으로 나타난 반면, HDL-cholesterol 및 triglyceride의 함량은 큰 폭으로 증가된 것을 확인하였다. 또한 glucose 및 항체 생성능의 수치는 가공오징어 급여군에서 높게 나타났다. 따라서 가공오징어가 건조오징어와 비교했을 때 상대적으로 체내 면역체계에 긍정적인 영향을 줄 수 있을 것으로 생각된다. 하지만 건조오징어가 가공 과정을 거치면서 혈액 내 지질의 농도가 높아지는 결과를 도출함에 따라, 오징어 가공에서 타우린, DHA, EPA의 조성과 지질조성에 변화를 주어야 함을 확인했다. 따라서 오징어 가공의 효과적인 공정에 대한 연구가 종래 오징어가 가지고 있는 문제점을 해결할 수 있을 것으로 사료된다.

Keywords

References

  1. Kim JD, Lee YI, Kim BR, Choi YS, Lee SY. 1997. Effects of Meju powder supplementation on lipid metabolism in rats fed hypercholesterolemic diet. J Korean Soc Food Sci Nutr26: 314-318.
  2. Kim BR, Kim JD, Ham SS, Choi YS, Lee SY. 1995. Effects of spice added Natto supplementation on the lipid metabolismin rats. J Korean Soc Food Nutr 24: 121-126.
  3. Bowman BA, Russell RM. 2001. Presents knowledge in nutrition. 8th ed. ILSL, Washington DC, USA.
  4. Yu CH. 2002. A review on the changes of lifestyle and the related nutritional problems in Korea. Korean J Nutr 5:137-146.
  5. Kang JH. 1998. Current status and perspectives of nutritional assessment in periodic health examination. Korea J Community Nutr 3: 855-858.
  6. Nestle M. 1998. Nutrition in medical education-New policies needed for the 1990S. J Nutr Educ 20: 1-6.
  7. Sugano M, Imaizumi K. 1986. Cholesterol. Sankyoshuppan, Tokyo, Japan. p 15-48.
  8. Kim HS, Kim JS, Heu MS. 2008. Fractionation of endoprotease from viscera of the Argentina shortfin squid I llex argentinus. J Korean Fish Soc 41: 176-181.
  9. Stansby ME. 1990. Fatty acid composition of fish. In Fish Oils in Nutrition. Stansby ME, ed. Van Nostrand Reinhold, New York, USA. p 6-39.
  10. Okutani K. 1976. An antitumor substance obtained from the internal shell of squid-Isolation procedures and antitumor activity. Bull Jap Soc Sci Fish 42: 449-453. https://doi.org/10.2331/suisan.42.449
  11. Kim JH, Seo HY, Kim KS. 2004. Analysis of radiolytic products of lipid in irradiated dried squids (Todarodes pacificus).J Food Prot 67: 1731-1735.
  12. Marta MD, Joao BR, Rafael NM, Thiago D, Ivana BC, VaniaLL, Maria RS. 2009. Association between ischemia-modified albumin, lipids and inflammation biomarkers in patients with hypercholesterolemia. Clin Biochem 42: 666-671. https://doi.org/10.1016/j.clinbiochem.2009.01.010
  13. Harizi H, Homo F, Amrani A, Coulaud J, Mormede P. 2007.Marked genetic differences in the regulation of blood glucose under immune and restraint stress in mice reveals a wide range of corticosensitivity. J Neuroimmunol 189: 59-68. https://doi.org/10.1016/j.jneuroim.2007.06.019
  14. Catherine AR, Lydia B, Gaorav G, John L, Michael N,Godfrey SG. 2006. Site-specific influence of polyunsaturated fatty acids on atherosclerosis in immune incompetent LDL receptor deficient mice. Atherosclerosis 187: 325-331. https://doi.org/10.1016/j.atherosclerosis.2005.10.004
  15. Rodrigueza C, Pereza A, Badiaa P, Izquierdob S, Fernandez H, Lorenzo A. 1998. The n-3 highly unsaturated fatty acids requirements of gilthead seabream (Sparus aurata L.) larvae when using an appropriate DHA/EPA ratio in the diet.Aquaculture 169: 9-23. https://doi.org/10.1016/S0044-8486(98)00328-7
  16. John AT, Vitor S, Catherine JW. 1995. The in vivo and in vitro protective properties of taurine. General Pharm: Vas Sys 26: 453-462. https://doi.org/10.1016/0306-3623(94)00203-Y
  17. Jeun JA, Jung HY, Kim JH, Kim YO, Youn SH, Shin CS.2008. Effect of the monascus pigment threonine derivative on regulation of the cholesterol level in mice. Food Chem 107: 1078-1085. https://doi.org/10.1016/j.foodchem.2007.09.021
  18. Kim CH, Kwon MC, Han JG, Ha JH, Jeong HS, Choi GP,Park UK, Nam JH, Hwang B, Lee HY. 2008. Immune activities of Rhodiola sachalinensis A. Bor extracts isolated with various extraction process. Korean J Med Crop Sci 16:383-389.
  19. Bihan E, Perrin A, Kouet N. 2007. Effect of different treatments on the quality of cuttlefish (Sepia officinalis L.) viscera. Food Chem 104: 345-352. https://doi.org/10.1016/j.foodchem.2006.11.056
  20. Geni R, Deborah HM, Rosana AM, Yara S, Elizabeth AFS. 2006. Fatty acids and cholesterol oxidation in salted and dried shrimp. Food Chem 95: 344-351. https://doi.org/10.1016/j.foodchem.2005.02.030
  21. Roach J, Lee M, Sloane-Stanley GH. 1993. The low density lipoprotein receptor and cholesterol synthesis are affected differently by dietary cholesterol in the rat. Biochem Biophy Acta 1170: 165-172. https://doi.org/10.1016/0005-2760(93)90067-J
  22. William EC, Don SL. 1982. The effect of shellfish in the diet upon the plasma lipid levels in humans. Metabolism 31: 1046-1051. https://doi.org/10.1016/0026-0495(82)90150-0
  23. Kim JY, Lee YJ. 2008. A study on the effects of Rhodiola rosea root on the immune system. Korean J Herbology23: 179-189.
  24. Carl RA, Glenn MS, Nabila MW, Jorge LR, Edward EH,Renu V, Frank DK, Gary RM, Fredrick C. 1996. Immunization with cholesterol-rich liposomes induces anti-cholesterol antibodies and reduces diet-induced hypercholesterolemia and plaque formation. J Laboratory Clinical Med127: 40-49. https://doi.org/10.1016/S0022-2143(96)90164-X