DOI QR코드

DOI QR Code

Comparison of Different Methods of Aortic Valve Conduit Xenograft Preservation in an Animal Experiment Model; Fresh Cryopreservation versus Acellularized Cryopreservation

동물 실험 모델에서 적용한 이종대동맥판막도관의 조직보존방법 비교; 신선 냉동보존과 무세포화 냉동보존

  • Kim, Chang Young (Department of Thoracic and Cardiovascular Surgery, Ilsan Paik Hospital, College of Medicine, Inje University) ;
  • Kim, Kyung-Hwan (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Clinical Research Institute, Xenotransplantation Research Center) ;
  • Moon, Kyung Chul (Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Kim, Woong-Han (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Clinical Research Institute, Xenotransplantation Research Center) ;
  • Sung, Si-Chan (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Pusan National University) ;
  • Kim, Yong-Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Clinical Research Institute, Xenotransplantation Research Center)
  • 김창영 (인제대학교 일산백병원 흉부외과) ;
  • 김경환 (서울대학교 의과대학 서울대학교병원 흉부외과학교실, 임상의학연구소) ;
  • 문경철 (서울대학교 의과대학 서울대학교병원 병리학교실) ;
  • 김웅한 (서울대학교 의과대학 서울대학교병원 흉부외과학교실,임상의학연구소) ;
  • 성시찬 (양산부산대학교 의학전문대학원 흉부외과학교실) ;
  • 김용진 (서울대학교 의과대학 서울대학교병원 흉부외과학교실,임상의학연구소)
  • Received : 2009.09.15
  • Accepted : 2009.11.13
  • Published : 2010.02.05

Abstract

Background: The commercially used vascular xenografts have some problems such as calcification, fibrosis and tissue degeneration that are associated with inflammatory and immunologic reactions. We compared two methods of xenograft preservation (fresh cryopreservation versus acellularized cryopreservation) of goat aorta. Material and Method: Aortic valved xenografts were harvested from adult pigs, and these were preserved using fresh cryopreservation (FC group, n=4) or acellularized crypreservation (AC group, n=4). These xenografts were implanted into adult goats. There were 2 short-term survivors (less than 100 days) and 2 long-term survivors in each group. These xenografts were explanted and they underwent microscopic examination. Result: The goats survived 31, 40, 107 and 411 days in the FC group and the other goats survived 5, 40, 363 and 636 days in the AC group. All the short-term survivors in each group expired because of rupture at the proximal anastomosis site. Marked neutrophil infiltration was observed in the FC group FC and lymphocytes were observed in the AC group. There were no differences in the occurrence of calcification, fibrosis and thrombosis among the groups. Conclusion: Some goats survived more than 100 days after the xenograft implantation irrespective of the methods of preservation. Because severe tissue degeneration developed in both groups, we think these methods are not appropriate for xenograft preservation of aorta. It was worth a preliminary trial for improving the preservation method or to modify the processing of xenografts.

배경: 현재 사용되는 다양한 이식편 중 상업적으로 이용 가능한 이종조직도관은 조직의 석회화, 섬유화, 염증 및 면역반응에 의한 조직 손상 등 조직변형이 발생하는 문제점을 가지고 있다. 본 연구에서는 높은 압력에 노출되는 대동맥부위의 이종판막도관을 조직보존방법에 따라 비교해 보고자 하였다. 대상 및 방법: 돼지로부터 채취한 이종대동맥판막도관을 신선 냉동보존 및 무세포화 냉동보존으로 처리한 후 염소의 대동맥에 이식하였다. 생존기간에 따라 각각 2마리씩의 단기 생존(100일 미만) 및 장기 생존한 염소에서 이식했던 판막도관을 추출하여 조직학적 변화를 관찰하였다. 결과: 신선 냉동보존 군은 각각 31일, 40일, 107일, 411일 생존하였고, 무세포화 냉동보존 군은 각각 5일, 40일, 363일, 636일 생존하였다. 이중 단기 생존한 모든 염소는 문합 부위의 파열로 사망하였다. 신선 냉동보존 군에서는 침윤한 염증세포가 주로 호중구인 반면, 무세포화 냉동보존 군에서는 주로 림프구가 관찰되었다. 석회화, 섬유화, 혈전 형성 등의 빈도는 두 군간에 차이가 없었다. 결론: 두 가지 처리법으로 이종대동맥판막도관을 보존 후 장기 생존 유도가 일부에서 가능하였다. 두 군에서 모두 심각한 조직변성이 발생하여 이종도관을 적절히 보존 처리할 수 없었던 것으로 관찰되었다. 향후 개선된 보존법이나 변형된 판막도관 처리법의 개발 등의 실험연구에 기초자료로 가치가 있다고 판단된다.

Keywords

Acknowledgement

Supported by : 보건복지가족부

References

  1. Park CS, Kim YJ, Sung SC, et al. Study on effective decellularization technique for xenograft cardiac valve, arterial wall and pericardium; optimization of decellularization. Korean J Thorac Cardiovasc Surg 2008;41:550-62
  2. Jamieson WRE, Rosado LJ, Munro AI, et al. Carpentier Edwards standard porcine bioprosthesis: primary tissue failure(structureal valve deterioration) by age groups. Ann Thorac Surg 1988;46:155-62 https://doi.org/10.1016/S0003-4975(10)65888-2
  3. Human P, Zilla P. Characterization of the immune response to valve bioprosthesis and its role in primary tissue failure. Ann Thorac Surg 2001;71(Suppl):S385-8 https://doi.org/10.1016/S0003-4975(01)02492-4
  4. Simon P, Kasimir MT, Seebacher G, et al. Early failure of the tissue engineered porcine heart valve SynerGraft in pediatric patients. Eur J Cardiothorac Surg 2003;23:1002-6 https://doi.org/10.1016/S1010-7940(03)00094-0
  5. Mayer JE. Tissue engineering for cardiac valve surgery. In: Cohn LH. Cardiac surgery in the adult. 3rd ed. New York: McGraw-Hill co. 2007;1649-56
  6. Jo WM, Sohn YS, Choi YH, Kim HJ, Cho HD. Modified acellularization for successful vascular xenotransplantation. J Korean Med Sci 2007;22:262-9 https://doi.org/10.3346/jkms.2007.22.2.262
  7. O'brien MF, Stafford EG, Gardener MA, Pholner PG, Mc- Giffin DC. A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves with a note on chromosomal studies. J Thorac Cardiovasc Surg 1987;94:812-23
  8. Brockbank KG, Donovan TJ, Ruby ST, Carpenter JF, Hagen PO, Woodley MA. Functional analysis of cryopreserved veins. preliminary report. J Vasc Surg 1990;11:94-102 https://doi.org/10.1067/mva.1990.16919
  9. Cebotari S, Mertsching H, Kallenbach K, et al. Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 2002;106:I63-8
  10. Kim KC, Lee C, Choi CH, et al. Development of porcine pericardial heterograft for clinical application (tensile strength- thickness). Korean J Thorac Cardiovasc Surg 2008;41:170-6
  11. Jastrzebska M, Wrzalik R, Kocot A, Zalewska-Rejdak J, Cwalina B. Raman spectroscopic study of glutaraldehydestabilized collagen and pericardium tissue. J Biomater Sci Polym Ed 2003;14:185-97 https://doi.org/10.1163/156856203321142605
  12. Humana P, Bezuidenhouta D, Torriannib M, Hendriksc M, Zilla P. Optimization of diamine bridges in glutaraldehyde treated bioprosthetic aortic wall tissue. Biomaterials 2002;23:2099-103 https://doi.org/10.1016/S0142-9612(01)00302-7
  13. Kim KC, Choi YK, Kim SH, Kim YJ. Effect of diamine bridges using L-lysine in glutaladehyde treated porcine pericardium. Korean J Thorac Cardiovasc Surg 2009;42:157-64
  14. Gendler E, Gendler S, Nimni ME. Toxic reactions evoked by glutaradehyde-fixed pericardium and cardiac valve tissue bioprosthesis. J Biomed Mater Res 1984;18:727-36 https://doi.org/10.1002/jbm.820180703
  15. Zilla P, Brink J, Human P, et al. Prosthetic heart valve: Catering for the few. Biomaterials 2008;29:385-406 https://doi.org/10.1016/j.biomaterials.2007.09.033
  16. al-Mohanna F, Collison K, Parhar R, et al. Activation of naive xenogeneic but not allogeneic endothelial cells by human naive neutrophils: a potential occult barrier to xenotransplantation. Am J Pathol 1997;151:111-20
  17. Macher BA, Galili U. The Gal$\alpha$1,3Gal$\beta$1,4GlcNAc-R ($\alpha$-Gal) epitope: A carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta 2008;1780:75-88 https://doi.org/10.1016/j.bbagen.2007.11.003

Cited by

  1. Development of a next-generation tissue valve using a glutaraldehyde-fixed porcine aortic valve treated with decellularization, α-galactosidase, space filler, organic solvent and detoxification vol.48, pp.1, 2010, https://doi.org/10.1093/ejcts/ezu385