Photo-catalytic Degradation on B-, C-, N-, and F Element co-doped TiO2 under Visible-light Irradiation

B, C, N, F 원소 다중도핑된 TiO2의 가시광 광촉매 분해 반응

  • Bai, Byong Chol (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Im, Ji Sun (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Kim, Jong Gu (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
  • 배병철 (충남대학교 공과대학 정밀응용화학과) ;
  • 임지선 (충남대학교 공과대학 정밀응용화학과) ;
  • 김종구 (충남대학교 공과대학 정밀응용화학과) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2009.08.07
  • Accepted : 2009.10.07
  • Published : 2010.02.10

Abstract

In this study, boron, carbon, nitrogen and fluorine co-doped $TiO_{2}$ photocatalysts using tetraethylammonium tetrafluoroborate (TEATFB) have been prepared by different heat treatment temperatures to decrease the band gap. To explore the visible light photocatalytic activity of the novel low‐zband gap $TiO_{2}$ photocatalyst, the removal of two dyes was investigated, namely, acridine orange and rhodamine B. XRD patterns demonstrate that the samples calcined at temperatures up to $800^{\circ}C$ clearly show anatase peaks. The XPS results show that all the doped samples contain N, C, B and F elements and the doped $TiO_{2}$ shows the shift in the band gap transition down to 2.98 eV as UV-DRS results. In these UV-Vis results, photocatalytic activity of the doped $TiO_{2}$ is 1.61 times better than undoped $TiO_{2}$. Specially, excellent photoactivity results were obtained in the case of samples treated at $700^{\circ}C$.

본 연구에서는 여러 가지 열처리 온도에서 다성분 도핑에 의한 광촉매의 밴드갭 저감 및 가시광 광분해 효과를 알아보고자 tetraethylammonium tetrafluoroborate (TEATFB)로 B, C, N, F 등이 동시에 도핑된 $TiO_{2}$ 광촉매를 제조하였다. 도핑된 $TiO_{2}$ 광촉매가 가시광선영역에서 분해되는 정도를 확인하기 위해서 태양광에 조사하여 rhodamine B와 acridine orange로 염료분해 실험을 수행하였다. XRD 결과 $800^{\circ}C$ 이하에서 열처리된 $TiO_{2}$ 광촉매는 anatase 구조가 존재하고 있음을 알 수 있었다. XPS 분석을 통하여 광활성에 영향을 미치는 B, C, N, F의 결합구조를 확인하였고 UV-DRS 결과로부터 다성분 도핑된 $TiO_{2}$ 광촉매의 밴드 갭이 2.98 eV로 줄어든 것을 알 수 있었다. 다성분 도핑 $TiO_{2}$의 태양광 조사에 의한 UV-Vis 결과에서 acridine orange에 대한 광분해 효과가 도핑되지 않은 샘플에 비해 1.61배 증가함을 알 수 있었다. 특히, 다성분이 동시 도핑되고 $700^{\circ}C$에서 열처리된 샘플이 acridine orange과 rhodamine B 두 가지 염료 모두에서 가장 좋은 광분해 효과를 보여 주었다.

Keywords

References

  1. T. Mishra, J. Hait, N. Aman, M. Gunjan, B. Mahato, and R. K. Jana, J. Colloid Interface Sci., 327, 377 (2008) https://doi.org/10.1016/j.jcis.2008.08.040
  2. S. M. Yun, K. Palanivelu, Y. H. Kim, P. H. Kang, and Y. S. Lee, J. Ind. Eng. Chem., 14, 667 (2008) https://doi.org/10.1021/ie50151a037
  3. S. H. Song and M. Kang, J. Ind. Eng. Chem., 14, 785 (2008) https://doi.org/10.1021/ie50153a009
  4. M. Schiavello and H. Dordrecht, Photoelectrochemistry, Photocatalysis, and Photoreactors: Fundamentals and Developments, Kluwer Academic, Boston, MA, (1985)
  5. D. S. Bhatkhande, V. G. Pangarkar, and A. A. Beenackers, J. Chem. Technol. Biotechnol., 77, 102 (2001) https://doi.org/10.1002/jctb.532
  6. J. Moon, C. Y. Yun, K. W. Chung, M. S. Kang, and J. Yi, Catal. Today., 87, 77 (2003) https://doi.org/10.1016/j.cattod.2003.10.009
  7. C. H. Chiou and R. S. Juang, J. Hazard. Mater., 149, 1 (2007) https://doi.org/10.1016/j.jhazmat.2007.03.035
  8. H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh, and N. Iwamoto, J. Phys. Chem. B, 102, 10707 (1998) https://doi.org/10.1021/jp982835q
  9. K. Palanivelu, J. S. Im, and Y. S. Lee, Carbon Sci., 8, 214 (2007)
  10. X. Qiu and C. Burda, Chem. Phys., 339, 1 (2007) https://doi.org/10.1016/j.chemphys.2007.06.039
  11. T. H. Xu, C. L. Song, Y. Liu, and G. R. Han, J. Zhejiang Univ. Sci. B, 7, 299 (2006) https://doi.org/10.1631/jzus.2006.B0299
  12. V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello, and M. Graziani, Chem. Phys., 339, 111 (2007) https://doi.org/10.1016/j.chemphys.2007.05.024
  13. D. Li, H. Haneda, S. Hishita, and N. Ohashi, Chem. Mater., 17, 2588 (2005) https://doi.org/10.1021/cm049100k
  14. J. Yu, X. Zhao, and G. Wang, Mater. Chem. Phys., 68, 253 (2001) https://doi.org/10.1016/S0254-0584(00)00364-3
  15. H. Park and W. Choi, J. Phys. Chem. B, 108, 4086 (2004) https://doi.org/10.1021/jp036735i
  16. D. Li, H. Haneda, S. Hishita, and N. Ohashi, Chem. Mater., 17, 2596 (2005) https://doi.org/10.1021/cm049099p
  17. V. Balek, D. Li, J. Subrt, E. Vecernikova, S. Hishita, T. Mitsuhashi, and H. Haneda, J. Phys. Chem. Solids., 68, 770 (2007) https://doi.org/10.1016/j.jpcs.2007.01.028
  18. D. Chen, Z. Jiang, J. Geng, Q. Wang, and D. Yang, Ind. Eng. Chem. Res., 46, 2741 (2007) https://doi.org/10.1021/ie061491k
  19. K. M. Reddy, B. Baruwati, M. Jayalakshmi, M. M. Rao, and S. V. Manorama, J. Solid State Chem., 178, 3352 (2005) https://doi.org/10.1016/j.jssc.2005.08.016
  20. D. Chen, D. Yang, Q. Wang, and Z. Jiang, Ind. Eng. Chem. Res., 45, 4110 (2006) https://doi.org/10.1021/ie0600902
  21. I. E. Grey, C. Li, and C. C. Macrae, J. Solid State Chem., 127, 240 (1996) https://doi.org/10.1006/jssc.1996.0380
  22. C. Chen, H. Bai, S. Chang, C. Chang, and W. Den, J. Nanopart. Res., 9, 365 (2006) https://doi.org/10.1007/s11051-006-9141-2
  23. S. Sakthivel and H. Kisch, Chem. Phys. Chem., 4, 487 (2003) https://doi.org/10.1002/cphc.200200554
  24. R. Swanepoel, J. Phys. E, 16, 1214 (1983) https://doi.org/10.1088/0022-3735/16/12/023
  25. T. Giannakopoulou, N. Todorova, C. Trapalis, and T. Vaimakis, Mater. Lett., 61, 4474 (2007) https://doi.org/10.1016/j.matlet.2007.02.056
  26. T. Yamaki, T. Shumita, and S. Yamamoto, J. Mater. Sci. Lett., 21, 33 (2002) https://doi.org/10.1023/A:1014282225859
  27. F. Izumi, Bull. Chem. Soc. Jpn., 51, 1771 (1978) https://doi.org/10.1246/bcsj.51.1771
  28. C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, and W. F. Maier, Appl. Catal. B Environ., 32, 215 (2001) https://doi.org/10.1016/S0926-3373(01)00141-2
  29. M. S. Lee, G. D. Lee, C. S. Lim, and S. S. Hong, J. Korean Ind. Eng. Chem., 13, 216 (2002)
  30. V. Stengl, S. Bakardjieva, and N. Murafa, Mater. Chem. Phys., 114, 217 (2009) https://doi.org/10.1016/j.matchemphys.2008.09.025
  31. X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, and K. Klabunde, J. Catal., 260, 128 (2008) https://doi.org/10.1016/j.jcat.2008.09.016