DOI QR코드

DOI QR Code

Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis

  • Reina, Asa (Graduate School of Animal Science, Obihiro University of Agriculture and Veterinary Medicine Obihiro) ;
  • Tanaka, A. (Graduate School of Animal Science, Obihiro University of Agriculture and Veterinary Medicine Obihiro) ;
  • Uehara, A. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Shinzato, I. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Toride, Y. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Usui, N. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Hirakawa, K. (Fermentation & Biotechnology Laboratory, Amino Acids Company, Ajinomoto Co., Inc.) ;
  • Takahashi, J. (Graduate School of Animal Science, Obihiro University of Agriculture and Veterinary Medicine Obihiro)
  • Received : 2009.08.27
  • Accepted : 2009.11.06
  • Published : 2010.06.01

Abstract

Effects of protease-resistant antimicrobial substances (PRA) produced by Lactobacillus plantarum and Leuconostoc citreum on rumen methanogenesis were examined using the in vitro continuous methane quantification system. Four different strains of lactic acid bacteria, i) Lactococcus lactis ATCC19435 (Control, non-antibacterial substances), ii) Lactococcus lactis NCIMB702054 (Nisin-Z), iii) Lactobacillus plantarum TUA1490L (PRA-1), and iv) Leuconostoc citreum JCM9698 (PRA-2) were individually cultured in GYEKP medium. An 80 ml aliquot of each supernatant was inoculated into phosphate-buffered rumen fluid. PRA-1 remarkably decreased cumulative methane production, though propionate, butyrate and ammonia N decreased. For PRA-2, there were no effects on $CH_4$ and $CO_2$ production and fermentation characteristics in mixed rumen cultures. The results suggested that PRA-1 reduced the number of methanogens or inhibited utilization of hydrogen in rumen fermentation.

Keywords

References

  1. Aslim, B., Z. N. Yuksekdag, E. Sarikaya and Y. Beyatli. 2005. Determination of the bacteriocin-like substances produced by some lactic acid bacteria isolated from Turkish dairy products. LWT 38:691-694 https://doi.org/10.1016/j.lwt.2004.08.001
  2. Aymerich, M. T., M. Garriga, J. M. Monfort, I. Nes and M. Hugas. 2000. Bacteriocin-producing lactobacilli in Spanish-style fermented sausages: haracterization of bacteriocins. Food Microbiol. 17:33-45 https://doi.org/10.1006/fmic.1999.0275
  3. Brijesh, K. T., P. V. Vasilis, P. O. D. Colm, M. Kasiviswanathan, B. Paula and P. J. Cullen. 2009. Applivation of natural antimicrobials for food preservation. J. Agric. Food Chem. 57: 5987-6000 https://doi.org/10.1021/jf900668n
  4. Callaway, T. R., M. S. Alexandra, Carneiro De Melo and J. B. Russell. 1997. The effect of nisin and monensin on ruminal fermentations in vitro. Curr Microbiol. 35:90-96 https://doi.org/10.1007/s002849900218
  5. Chen, H. and D. G. Hoocver. 2003. Bacteriocins and their food applications. CRFSFS 12:82-99 https://doi.org/10.1111/j.1541-4337.2003.tb00016.x
  6. Conway, E. J. and E. O'Malley. 1942. Microdiffusion methods:ammonia and urea using buffered absorbents (revised methods for ranges greater than 10 $\mu$g N). Biochem. J. 36:655-661
  7. Daeschel, M. A., M. C. Mckenny and L. C. McDonald. 1990. Bacteriocidal activity of Lactobacillus plantarum C11. Food Microbiol. 7:91-99 https://doi.org/10.1016/0740-0020(90)90014-9
  8. Delves-Broughton, J., P. Blackburn, R. Evans and J. hugenholtz. 1996. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193-202 https://doi.org/10.1007/BF00399424
  9. Enan, G., A. A. El-Essawy, M. Uyttendaele and J. Debevere. 1996. Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage:characterization, production and bactericidal action of plantarcin UG1. Int. J. Food. Microbiol. 30:189-215 https://doi.org/10.1016/0168-1605(96)00947-6
  10. Ennahar, S., K. Sonomoto and A. Ishizaki. 1999. Class IIa bacteriocins from lactic acid bacteria: Antibacterial activity and food preservation. J. Biosci. Bioeng. 87:705-716 https://doi.org/10.1016/S1389-1723(99)80142-X
  11. Farkas-Himsley, H. 1980. Bacteriocins-are they broad-spectrum antibiotics? J. Antimicrob. Chemother. 6:424-426 https://doi.org/10.1093/jac/6.4.424
  12. Garriga, M., M. Hugas, T. Aymerich and J. M. monfort. 1993. Bacteriocinocinogenic activity of lactobacilli from fermented sausages. J. Appl. Bacteriol. 75:142-148 https://doi.org/10.1111/j.1365-2672.1993.tb02759.x
  13. Gonz$\'{a}$lez, B., P. Arca, B. Mayo and J. E. Su$\'{a}$rez. 1994. Detection, purification and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl. Environ. Microbiol. 6:2158-2163
  14. Green, S. J. and D. Minz. 2005. Suicide Polymerase Endonuclease Restriction, a Novel Technique for Enhancing PCR Amplification of Minor DNA Templates. Appl. Environ. Microbiol. 71:4721-4727 https://doi.org/10.1128/AEM.71.8.4721-4727.2005
  15. Guan, H., K. M. Wittenberg, K. H. Ominski and D. O. Krause. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84:1896-1906 https://doi.org/10.2527/jas.2005-652
  16. Jim$\'{e}$nez-D$\'{i}$az, R., R. M. Rios-S$\'{a}$nchez, M. Desmazeaud, J. L. Ruiz-Barba and J. C. Piard. 1993. Plantaricin S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl. Environ. Microbiol. 59:1416-1424
  17. Johnson, K. A. and D. E. Johnson. 1995. Methane emission from cattle. J. Anim. Sci. 73:2483-2492
  18. Kalmokoff, M. L., F. Bartlett and R. M. Teather. 1996. Are ruminal bacteria armed with bacteriocins? J. Dairy Sci. 79:2297-2306 https://doi.org/10.3168/jds.S0022-0302(96)76608-0
  19. Kelly, W. J., R. V. Asmundson and C. M. Huang. 1996. Characterization of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum. J. Appl. Bacteriol. 81:657-662
  20. Leal, M. V., M. Baras, J. L. Ruiz-Barba, B. Floriano and R. Jimenez-Diaz. 1998. Bacteriocin production and competitiveness of Lactobacillus plantarum LPCO10 in olive juice broth, a culture medium obtained from olives. Int. J. Food. Microbiol. 43:129-134 https://doi.org/10.1016/S0168-1605(98)00079-8
  21. MacDougall, E. I. 1948. Studies on ruminal saliva 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109
  22. Mantovani, H. C. and J. B. Russell. 2002. The ability of a bacteriocin of streptococcus bovis HC5 (bovicin HC5) to inhibit clostridium aminophilum, an obligate amino acid fermenting bacterium from the rumen. Anaerobe 8:247-252 https://doi.org/10.1006/anae.2002.0437
  23. McAuliffe, O., R. P. Ross and C. Hill. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25:285-308 https://doi.org/10.1111/j.1574-6976.2001.tb00579.x
  24. Muyzer, G., E. C. De waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700
  25. Mwenya, B., C. Sar, B. Pen, R. Morikawa, K. Takaura, S. Kogawa, K. Kimura, K. Umetsu and J. Takahashi. 2006. Effects of feed additives on ruminal methanogenesis and anaerobicfermentation of manure in cows and steers. In:Greenhouse Gases and Animal Agriculture (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). Amsterdam. ELSEVIER B.V. pp. 209-212
  26. Nakatsu, C. H., V. Torsvik and L. ${\O}$vreas. 2000. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J. 64:1382-1388 https://doi.org/10.2136/sssaj2000.6441382x
  27. ${\O}$rskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci. Camb. 92:499-503 https://doi.org/10.1017/S0021859600063048
  28. Rekhif, N., A. Atrih and G. Lefebvre. 1995. Activity of plantaricin SA6, a bacteriocin produced by Lactobacillus plantarum SA6 isolated from fermented sausage. J. Appl. Bacteriol. 78:349-358 https://doi.org/10.1111/j.1365-2672.1995.tb03417.x
  29. Sauer, F. D., V. Fellner, R. Kinsman, J. K. Kramer, H. A. Jackson, A. J. Lee and S. Chen. 1998. Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J. Anim. Sci. 76:906-914
  30. Santoso, B., B. Mwenya, C. Sar, Y. Gamo, T. Kobayashi, R. Morikawa, K. Kimura, H. Mizukoshi and J. Takahashi. 2004. Effects of supplementing galacto- oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest. Prod. Sci. 91:209-217 https://doi.org/10.1016/j.livprodsci.2004.08.004
  31. Sar, C., B. Mwenya, B. Santoso, K. Takaura, R. Morikawa, N. Isogai, Y. Asakura, Y. Toride and J. Takahasi. 2005a. Effect of Escherichia coli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro. Anim. Feed Sci. Technol. 118:295-306 https://doi.org/10.1016/j.anifeedsci.2004.10.004
  32. Sar, C., B. Mwenya, B. Pen, R. Morikawa, K. Takaura, T. Kobayashi and J. Takahashi. 2005b. Effect of nisin on ruminal methane production and nitrate/nitrite reduction in vitro. Aust. J. Agric. Res. 56:803-810 https://doi.org/10.1071/AR04294
  33. SAS. 1996. SAS/STAT$^{{\circledR}}$ Software: Changes and Enhancements through release 6.11. SAS Institute Inc., Cary, NC, USA
  34. Sang, S. L., Jih-Tay Hsu, Hilario C. Mantovani and James B. Russell. 2002. The effect of bovicin HC5, A bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217:51-55
  35. Sang, S. L., Hilário C. Mantovani and James B. Russell. 2002. The binding and degradation of nisin by mixed ruminal bacteria. FEMS Microbiol. Ecol. 42:339-345
  36. Todorov, S., B. Onno, O. Sorokine, J. M. Chobert, I. Ivanova and X. Dousset. 1999. Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST 31 isolated from sourdough. Int. J. Food Microbiol. 48:167-177 https://doi.org/10.1016/S0168-1605(99)00048-3
  37. WHO Expert Committee on Food Additives. 1969. Specifications for the identify and purity of food additives and their toxicological evaluation: some antibiotics. World Health Organ. Tech. Rep. Ser. No. 430
  38. Yoshida, N., N. Takahashi and A. Hiraishi. 2005. Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Appl. Environ. Microbiol. 71:4325-4334 https://doi.org/10.1128/AEM.71.8.4325-4334.2005
  39. Yuan, J., Z.-Z. Zang, X.-Z. Chen and W. Yang. 2004. Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl. Microbiol. Biotechnol. 64:806-815 https://doi.org/10.1007/s00253-004-1599-1

Cited by

  1. KJB23 and Betel Leaves Extract vol.30, pp.2, 2016, https://doi.org/10.1080/08905436.2016.1166440
  2. Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan vol.24, pp.2, 2010, https://doi.org/10.5713/ajas.2011.r.03
  3. Isolation and identification of lactic acid bacteria in fresh plants and in silage from Opuntia and their effects on the fermentation and aerobic stability of silage vol.157, pp.9, 2019, https://doi.org/10.1017/s0021859620000143
  4. Role of dose‐dependent Lactobacillus farciminis on ruminal microflora biogases and fermentation activities of three silage‐based rations vol.127, pp.6, 2010, https://doi.org/10.1111/jam.14422
  5. Manipulating the rumen microbiome to address challenges facing Australasian dairy farming vol.60, pp.1, 2010, https://doi.org/10.1071/an18611
  6. Bacteriocin production by Leuconostoc citreum ST110LD isolated from organic farm soil, a promising biopreservative vol.131, pp.3, 2010, https://doi.org/10.1111/jam.15042