화력발전소 SCR 촉매의 활성저하 특성

Deactivation of SCR Catalysts Applied in Power Plants

  • 이정빈 (한국전력연구원 녹색성장연구소) ;
  • 김동화 (한국전력연구원 녹색성장연구소) ;
  • 이창용 (공주대학교 환경공학과)
  • Lee, Jung-Bin (Green Growth Lab., Korea Electric Power Research Institute) ;
  • Kim, Dong Wha (Green Growth Lab., Korea Electric Power Research Institute) ;
  • Lee, Chang-Yong (Department of Environmental Engineering, Kongju National University)
  • 투고 : 2009.11.16
  • 심사 : 2010.01.22
  • 발행 : 2010.02.10

초록

국내에서 가동 중인 석탄, 오리멀젼, LNG 등의 화력발전소에서 선택적 촉매 환원(SCR) 공정에 사용되고 있는 촉매의 재생을 연구하기 위하여 이들 촉매의 활성 저하를 고찰하였다. XRD, ICP-AES, BET, SEM 분석 등으로 촉매의 특성분석을 수행하였고 이들 촉매에 대하여 암모니아 SCR을 행하였다. 석탄 화력발전소의 SCR 촉매는 연료 성분과 관련된 황산염과 분진의 침적에 의한 기공 폐색에 기인하여 활성저하가 발생하였다. 오리멀젼 화력발전소의 SCR 촉매는 연료에 함유된 바나듐과 황 성분 그리고 연료에 첨가된 마그네슘 화합물의 침적에 의한 기공 폐색에 기인하여 촉매 표면적이 크게 감소하였다. 그러나 촉매의 암모니아 SCR 활성은 약간 감소하였다. LNG 화력발전소의 SCR 촉매는 사용 기간이 2년 이상임에도 불구하고 활성저하는 거의 일어나지 않았다.

Deactivation of SCR catalysts applied in coal, orimulsion, and LNG power plants in Korea were studied for the regeneration of the deactivated catalyst. The catalysts were characterized by XRD, ICP-AES, BET and SEM, and were examined for ammonia SCR. Deactivation of SCR catalyst applied in coal power plant was mainly caused by the blockade of the pore due to the deposition of sulfate and particulate related to the ingredients of the fuel. The surface area of SCR catalyst applied in orimulsion power plant decreased considerably by the accumulation of the compounds of vanadium, sulfur, and magnesium on the surface of the catalyst. The compounds of vanadium and sulfur were related to the ingredients of the fuel, and the compound of magnesium was related to the additive of the fuel. The activity of the deactivated catalyst for ammonia SCR, however, decreased slightly. Despite the long use for more than two-year, deactivation of SCR catalyst applied in LNG power plants hardly occurred.

키워드

과제정보

연구 과제 주관 기관 : 산업자원부

참고문헌

  1. M. Chiron, Catalysis and Automotive Pollution Control, eds. A, Crucq and A. Frennet (Eds.), p. 1, Elsevier (1987)
  2. H. Bosch and F. Janssen, Catal. Today, 2, 369 (1988) https://doi.org/10.1016/0920-5861(88)80002-6
  3. F. J. Janssen in Environmental Catalysis, G. Ertl, H. Knozinger, and J. Weitkamp (Eds.), p. 121, Wiley-VCH (1999)
  4. C. D. Cooper and F. C. Alley, Air Pollution Control, 3rd Ed., p. 493, Waveland Press (2002)
  5. R. Khodayari and C. U. I. Odenbrand, Appl. Catal., B: Environ., 30, 87 (2001) https://doi.org/10.1016/S0926-3373(00)00227-7
  6. W. Klaus, C. A. Chirstopher, G. Ludwig, and T. Josef, PPChem, 7, 309 (2005)
  7. C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice, p. 16, McGraw-Hill (1991)
  8. H. Gutberlet and B. Schallert, Catal. Today, 16, 207 (1993) https://doi.org/10.1016/0920-5861(93)85020-Z
  9. J. Blanco, P. Avila, A. Bahamonde, M. Yates, J. L. Belinchon, and E. Medina, Catal. Today, 27, 9 (1996) https://doi.org/10.1016/0920-5861(95)00167-0
  10. F. Janssen and R. Meijer, Catal. Today, 16, 157 (1993) https://doi.org/10.1016/0920-5861(93)85018-U
  11. S. Nojima, K. Iida, N, Kobayashi, and O. Naito, Mitsubishi Heavy Industries, Ltd. Technical Review, 38, 89 (2001)
  12. H. Kamata, K. Takahashi., and C. U. I. Odenbrand, J. Mol. Catal., 139, 189 (1999) https://doi.org/10.1016/S1381-1169(98)00177-0
  13. F. Kreith, D. Y. Goswami, and B. Sandor, in The CRC Handbook of Mechanical Engineering, 2 nd Ed., p. 1241, CRC Press (2004)
  14. P. B. Louis, in EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium, TR-113138-V2, p. 16 (1999)
  15. L. K. Boudali, A. Ghorbel, P. Grange, and F. Figueras, Appl. Catal., B: Environ., 59, 105 (2005) https://doi.org/10.1016/j.apcatb.2005.01.007