Correlation Research between Simultaneous Removal Reaction for NOx, Soot and Physico-chemical Properties of Pt/TiO2's Supports

Pt/TiO2 촉매의 담체 물성과 NOx, Soot 동시 반응특성과의 상관관계 연구

  • Kim, Sung Su (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Park, Kwang Hee (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University)
  • 김성수 (경기대학교 대학원 환경에너지시스템공학과) ;
  • 박광희 (경기대학교 대학원 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 대학원 환경에너지시스템공학과)
  • Received : 2009.11.23
  • Accepted : 2010.01.11
  • Published : 20100000

Abstract

Simultaneous removal reaction for NOx, soot over Pt catalysts using various $TiO_2$ as support was studied. The catalytic tests ware carried out injectin NO, soot, NO and soot simultaneously on each catalysts. As results, it showed different NOx removal efficiency and soot oxidation rate according to various kinds of $TiO_2$. Onset temperature of soot oxidation has a correlation to $NO_2$ generated for the independently performed NOx. It was investigated that NO to $NO_2$ oxidation was intimately related to crystallite size and surface area, and it has a tremendous impact on Pt aggregation on the catalyst surface and catalyst' reducibility. Therefore, we concluded that major index of the reaction was physico-chemical properties of catalyst' supports.

다양한 $TiO_2$를 담체로 한 Pt계 촉매에서 NOx, soot의 동시 제거 반응에 대한 연구를 수행하였다. 실험은 각 촉매를 NOx와 soot의 반응을 독립 또는 동시에 반응시킨 조건으로 수행하였으며 그 결과 $TiO_2$의 종류에 따라 서로 상이한 NOx 제거능력과 soot 산화력을 나타내었다. 또 NOx 독립 실험 시 생성된 $NO_2$ 양과 soot 산화시작온도가 저온으로 이동하는 정도가 관계가 있었다. 담체의 물성 중 Pt의 뭉침현상에 결정적 역할을 미치는 비표면적과 촉매의 환원력에 영향을 미치는 crystallite size가 NO의 $NO_2$ 전환반응에 밀접한 관계를 가지는 것으로 조사되었다. 따라서 반응의 중요한 인자는 촉매에 사용되는 담체의 물리화학적 특성임을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. J. S. Yang, S. S. Hong, K. J. Oh, K. M. Cho, B. G. Ryu, and D. W. Park, Appl. Chem., 1, 648 (1997)
  2. R. J. Farrauto, K. E. Voss, and R. J. Heck, SAE 932720
  3. R. Beckmann, W. Engeler, and E. Mueller, SAE 922330
  4. J. S. Yang, S. S. Hong, K. J. Oh, K. M. Cho, B. G. Ryu, and D. W. Park, Appl. Chem., 1, 429 (1998)
  5. J. Oi-Uchisawa, S. Wang, T. Nanbaa, A. Ohi, and A. Obuchi, Appl. Catal. B: Environ., 44, 207 (2003) https://doi.org/10.1016/S0926-3373(03)00055-9
  6. B. A. A. L. van Setten, J. Bremmer, S. J. Jelles, M. Makke, and . A. Moulijin, Catal. Today, 53, 613 (1999) https://doi.org/10.1016/S0920-5861(99)00149-2
  7. S. Biamino, P. Fino, D. Fino, N. Russo, and C. Badini, Appl. Catal. B: Environ., 61, 297 (2005) https://doi.org/10.1016/j.apcatb.2005.05.010
  8. A. Bueno-Lopez, K. Krishna, M. Makkee, and J. A. Moulijin, Catal. Lett., 99, 203 (2005) https://doi.org/10.1007/s10562-005-2120-x
  9. A. Bueno-Lopez, K. Krishna, M. Makkee, and J. A. Moulijin, J. Catal., 230, 237 (2005) https://doi.org/10.1016/j.jcat.2004.11.027
  10. X. Peng, H. Lin, W. Shangguan, and Z. Huang, Catal. Commun., 8, 157 (2007) https://doi.org/10.1016/j.catcom.2006.04.015
  11. A. Setiabudi, B. Setten, M. Makkee, and J. A. Moulijn, Appl. Catal. B: Environ., 35, 159 (2002) https://doi.org/10.1016/S0926-3373(01)00251-X
  12. S. S. Kim, K. H. Park, S. H. Bae, and S. C. Hong, J. Korean Ind. Eng. Chem., 20, 437 (2009)
  13. Y. Teraoka, K. Nakano, S. Kagawa, and W. F. Shangguan, Appl. Catal. B Environ., 5, 181 (1995) https://doi.org/10.1016/0926-3373(94)00059-X
  14. A. Fritz and V. Pitchon, Appl. Catal. B: Environ., 13, 1 (1997) https://doi.org/10.1016/S0926-3373(96)00102-6
  15. R. Burch and P. J. Millington, Catal. Today, 26, 185 (1995) https://doi.org/10.1016/0920-5861(95)00136-4
  16. S. Iwamoto, R. Takahashi, and M. Inoue, Appl. Catal. B Environ., 70, 146 (2007) https://doi.org/10.1016/j.apcatb.2006.01.016
  17. J. G. Kim, Y. C. Kim, N. C. Park, J. S. Shin, and J. S. Kim, Journal of the research institute for catalysis, 18, 55 (1996)
  18. T. Peng, D. Zhao, K. Dai, W. Shi, and K. Hirao, J. Phys. Chem. B, 109, 4947 (2005) https://doi.org/10.1021/jp044771r
  19. S. Zhan, D. Chen, X. Jiao, and C. Tao, J. Phys. Chem. B, 110, 11199 (2006) https://doi.org/10.1021/jp057372k
  20. J. C. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, J. Phys. Chem. B, 107, 13871 (2003) https://doi.org/10.1021/jp036158y
  21. D. S. Kim, S. J. Han, and S. Y. Kwak, J. Colloid Interface Sci., 316, 85 (2007) https://doi.org/10.1016/j.jcis.2007.07.037
  22. P. Panagiotopoulou, A. Christodoulakis, D. I. Kondarides, and S. Boghosian, J. Catal., 240, 114 (2006) https://doi.org/10.1016/j.jcat.2006.03.012
  23. M. Kobayashi and K. Miyoshi, Appl. Catal. B Environ., 72, 253 (2007) https://doi.org/10.1016/j.apcatb.2006.11.007
  24. J. H. Bae, C. K. Lee, and J. R. Sohn, Appl. Chem., 2, 969 (1998)