DOI QR코드

DOI QR Code

Direct detection of hemophilia B F9 gene mutation using multiplex PCR and conformation sensitive gel electrophoresis

Multiplex PCR과 Conformation Sensitive Gel Electrophoresis를 이용한 혈우병B F9 유전자 돌연변이 직접 진단법

  • Yoo, Ki Young (Korea Hemophilia Foundation) ;
  • Kim, Hee Jin (Department of Laboratory Medicine & Genetics, Sumsung Medical Center, School of Medicine, Sungkyunkwan University) ;
  • Lee, Kwang Chul (Department of Pediatrics, College of Medicine, Korea University)
  • 유기영 (한국혈우재단 서울의원) ;
  • 김희진 (성균관의과대학 삼성의료원 진단검사유전학과) ;
  • 이광철 (고려대학교 의과대학 소아청소년과)
  • Received : 2009.12.19
  • Accepted : 2010.02.12
  • Published : 2010.03.15

Abstract

Purpose : The F9 gene is known to be the causative gene for hemophilia B, but unfortunately the detection rate for restriction fragment length polymorphism-based linkage analysis is only 55.6%. Direct DNA sequencing can detect 98% of mutations, but this alternative procedure is very costly. Here, we conducted multiplex polymerase chain reactions (PCRs) and conformation sensitive gel electrophoresis (CSGE) to perform a screened DNA sequencing for the F9 gene, and we compared the results with direct sequencing in terms of accuracy, cost, simplicity, and time consumption. Methods : A total of 27 unrelated hemophilia B patients were enrolled. Direct DNA sequencing was performed for 27 patients by a separate institute, and multiplex PCR-CSGE screened sequencing was done in our laboratory. Results of the direct DNA sequencing were used as a reference, to which the results of the multiplex PCR-CSGE screened sequencing were compared. For the patients whose mutation was not detected by the 2 methods, multiplex ligation-dependent probe amplification (MLPA) was conducted. Results : With direct sequencing, the mutations could be identified from 26 patients (96.3%), whereas for multiplex PCRCSGE screened sequencing, the mutations could be detected in 23 (85.2%). One patient's mutation was identified by MLPA. A total of 21 different mutations were found among the 27 patients. Conclusion : Multiplex PCR-CSGE screened DNA sequencing detected 88.9% of mutations and reduced costs by 55.7% compared with direct DNA sequencing. However, it was more labor-intensive and time-consuming.

목 적 : F9 유전자는 혈우병B의 병인 유전자이다. 기존의 RFLP를 이용한 연관분석은 정보제공율이 55.6%에 불과하였다. 직접 염기서열 분석법은 98%의 돌연변이를 진단할 수 있지만, 고가의 비용이 든다. 본 연구는 F9 유전자를 대상으로 돌연변이의 선별검사로써 mPCR-CSGE를 사용하고, 이후 특정 유전자 부위만을 염기서열 분석하여 mPCR-CSGE의 유용성을 확인하기 위해 고안되었다. 방 법 : 연구대상은 비혈연 관계인 27명의 혈우병B 환자였다. 직접염기서열 분석법은 독립된 다른 기관에서 시행하였고, mPCR-CSGE 선별 후 염기서열 분석법은 본 연구자의 기관에서 시행되었다. 직접 염기서열 분석법의 결과가 참고치가 되어 mPCR-CSGE 선별 후 염기서열 분석법을 정확성, 경제성, 신속성, 편이성 측면에서 비교하였다. 두가지 방법으로 진단이 되지 않는 환자에게는 MLPA를 이용하여 돌연변이를 발견하였다. 결 과 : 직접 염기서열 분석법으로 26명(96.3%)의 환자에서 돌연변이를 확인할 수 있었다. mPCR-CSGE 선별 후 염기서열 분석법으로는 23명(85.2%)의 환자에서 돌연변이를 찾아낼 수 있었다. 1명의 환자는 MLPA로써 돌연변이를 확인할 수 있었다. 27명의 환자에게 21개의 독립적인 돌연변이가 있었다. mPCR-CSGE 선별 후 염기서열 분석법은 직접 염기서열 분석법에 비해 비용은 55.7%로 줄일 수 있었으나, 실험 단계는 더욱 복잡하였고, 시간도 하루가 더 걸렸으며, 세심한 실험상의 주의가 필요하였다. 결 론 : mPCR-CSGE 선별 후 염기서열 분석법은 85.2%의 높은 돌연변이 선별력을 보이고, 직접 염기서열 분석법의 57.7%의 비용만 소모하였으나, 실험과정에 세한 주의가 요구되었으며, 노동집약적이고, 실험 시간도 하루가 더 소요되었다.

Keywords

References

  1. Yoshitake S, Schach BG, Foster DC, Davie EW, Kurachi K. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985;24:3736-50 https://doi.org/10.1021/bi00335a049
  2. Roberts HR. Molecular biology of hemophilia B. Thromb Haemost 1993;70:1-9
  3. Goodeve AC, Peake IR. Diagnosis of hemophilia A and B carriers and prenatal diagnosis. In: Forbes CD, Aledort L, Madhok R, editors. Hemophilia. 1st ed. London: Chapman & Hall, 1997:63-74
  4. Lee JH, Choi YM, Choe J, Hwang DY, Lee JY. Usefulness of HhaI and MseI DNA polymorphism of factor IX gene in the molecular genetic diagnosis of hemophilia B in Korean population. Korean J Obstet Gynecol 1999;42:2761-7
  5. Choi YM, Kim EJ, Lee MR, Son YS, Choe J, Hwang DY, et al. Factor VIII gene mutations in Korean patients with hemophilia A. Korean J Obstet Gynecol 2004;47:1975-81
  6. Yoon HS, Song KS, Kwon OH, Cho CH. Detection of factor IX gene mutation and carriers in Korean hemophilia B patients by DNA sequencing. Korean J Clin Pathol 1993;13:363-71
  7. Haemophilia B Mutation Database (version 13, 2004). Available from URL: http://www.kcl.ac.uk/ip/petergreen/haemoBdatabase.html
  8. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISSMODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006;22:195-201 https://doi.org/10.1093/bioinformatics/bti770
  9. Jayandharan G, Shaji RV, Chandy M, Srivastava A. Identification of factor IX gene defects using a multiplex PCR and CSGE strategy-a first report. J Thromb Haemost 2003;1:2051-4 https://doi.org/10.1046/j.1538-7836.2003.00347.x
  10. Sommer SS, Bowie EJ, Ketterling RP, Bottema CD. Missense mutations and the magnitude of functional deficit: the example of factor IX. Hum Genet 1992;89:295-7 https://doi.org/10.1007/BF00220543
  11. Green PM. Hemophilia B-molecular basis. In: Lee CA, Berntorp E, Hoots WK, editors. Textbook of hemophilia.** the ed. Massachusetts: Blackwell Publishing, 2005: 91-6
  12. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol 1987;196:261-82 https://doi.org/10.1016/0022-2836(87)90689-9
  13. Mukherjee S, Mukhopadhyay A, Chaudhuri K, Ray K. Analysis of haemophilia B database and strategies for identification of common point mutations in the factor IX gene. Haemophilia 2003;9:187-92 https://doi.org/10.1046/j.1365-2516.2003.00727.x
  14. Bottema CD, Bottema MJ, Ketterling RP, Yoon HS, Janco RL, Phillips JA, et al. Why does the human factor IX gene have a G+C content of 40%? Am J Hum Genet 1991;49:839-50
  15. Ketterling RP, Bottema CD, Phillips JA, Sommer SS. Evidence that descendants of three founders constitute about 25% of hemophilia B in the united states. Genomics 1991;10:1093-6 https://doi.org/10.1016/0888-7543(91)90207-U
  16. Ganguly A, Rock MJ, Prockop DJ. Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: Evidence for solvent-induced bends in DNA heteroduplexes. Proc Natl Acad Sci U S A 1993;90:10325-9 https://doi.org/10.1073/pnas.90.21.10325
  17. Nagamine CM, Chan K, Lau YFC. A PCR artifact: generation of heteroduplexes. Am J Hum Genet 1989;45:337-9
  18. Williams IJ, Abuzenadah A, Winship PR, Preston FE, Dolan G, Wright J, et al. Precise carrier diagnosis in families with hemophilia A: use of conformation sensitive gel electrophoresis for mutation screening and polymorphism analysis. Thromb Haemost 1998;79:723-6
  19. Hill M, Deam S, Gordon B, Dolan G. Mutation analysis in 51 patients with haemophilia A: report of 10 novel mutations and correlations between genotype and clinical phenotype. Haemophilia 2005;11:133-41 https://doi.org/10.1111/j.1365-2516.2005.01069.x
  20. Hinks JL, Winship PR, Makris M, Preston FE, Peake IR, Goodeve AC. A rapid method for haemophilia B mutation detection using conformation sensitive gel electrophoresis. Br J Haematol 1999;104:915-8 https://doi.org/10.1046/j.1365-2141.1999.01274.x
  21. Belvini D, Salviato R, Radossi P, Pierobon F, Mori P, Castaldo G, et al. Molecular genotyping of the Italian cohort of patients with hemophilia B. Haematologica 2005;90:635-42
  22. Habart D, Kalabova D, Novotny M, Vorlova Z. Thirty-four novel mutations detected in factor VIII gene by multiplex CSGE: modeling of 13 novel amino acid substitutions. J Thromb Haemost 2002;1:773-81 https://doi.org/10.1046/j.1538-7836.2003.00149.x
  23. Jayandharan G, Shaji RV, Baidya S, Nair SC, Chandy M, Srivastava A. Identification of factor VIII gene mutations in 101 patients with haemophilia A: mutation analysis by inversion screening and multiplex PCR and CSGE and molecular modeling of 10 novel missense substitutions. Haemophilia 2005;11:481-91 https://doi.org/10.1111/j.1365-2516.2005.01121.x
  24. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome research 2005;15:1034-50 https://doi.org/10.1101/gr.3715005
  25. Ahn SA, Ahn IS, Lee SJ, Son HS. Progress in protein structure prediction: CASP and CAFASP experiments. Korean J Public Health 2005;42:73-84
  26. Kopp J, Schwede T. Automated protein structure homology modeling: a progress report. Pharmacogenomics 2004;5:405-16 https://doi.org/10.1517/14622416.5.4.405
  27. Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol 1994;14:625-34
  28. Kim WC, Park SH, Won JI. Protein structure alignment based on maximum of residue pair distance and similarity graph. Journal of KIISE:Database 2007;34:396-408