Synthesis of Yttria Doped Ceria Powders by a Citrate Method and Their Thin Film Preparation by Electrospray Method

구연산법에 의한 Yttria Doped Ceria (YDC) 분말 합성 및 정전분무법에 의한 YDC 박막 제조

  • Kwon, Hyuk Taek (Department of Chemical Engineering, Kyung Hee University) ;
  • Baik, Seung Min (Department of Chemical Engineering, Kyung Hee University) ;
  • Kim, Jinsoo (Department of Chemical Engineering, Kyung Hee University)
  • 권혁택 (경희대학교 화학공학과) ;
  • 백승민 (경희대학교 화학공학과) ;
  • 김진수 (경희대학교 화학공학과)
  • Received : 2009.10.08
  • Accepted : 2009.11.10
  • Published : 2010.02.10

Abstract

In this study, YDC powders with uniform composition and particle size were synthesized by a citrate method and their thin film deposition was conducted by electrospray deposition method. Polymeric precursor was prepared first by reaction of metal salts with citrate acid and ethylene glycol. Fluorite crystalline YDC powders were obtained by calcining the precursor at $750^{\circ}C$ for 3 h. The electrospray deposited films prepared at the optimum conditions became dense and defect-free after heat treatment at $1400^{\circ}C$ for 3 h. The film thickness was linearly varied with the deposition time.

본 연구에서는 균일한 조성과 입자 크기를 가지는 YDC 분말을 구연산법을 이용하여 합성하고, 이를 정전분무법을 이용하여 박막으로 제조하였다. 금속염에 구연산과 에틸렌글리콜을 첨가하여 합성한 고분자 전구체는 $750^{\circ}C$에서 3 h 동안 열처리하여 형석구조의 단일 결정상 YDC 분말로 제조되었다. 최적의 정전분무 조건에서 코팅된 박막은 $1400^{\circ}C$에서 3 h 동안 열처리된 후 기공이 없는 치밀한 구조를 나타냈으며, 코팅 두께는 분무 시간에 비례하여 증가하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. N. Q. Minh, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam (1995)
  3. S. P. S. Badwal and K. Foger, The 2nd International Fuel Cell Conference in Japan, 221 (1996)
  4. E. L. Shoemaker, C. U. Kim, and M. C. Vogt, Sens. Actuators, B, 110, 89 (2005) https://doi.org/10.1016/j.snb.2005.01.015
  5. M. J. Verkerk and A. J. Burggraaf, J. Electrochem. Soc., 128, 75(1981) https://doi.org/10.1149/1.2127391
  6. J. Van herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, Solid State Ionics, 86-88, 1255 (1996) https://doi.org/10.1016/0167-2738(96)00297-4
  7. G. Meng, C. Cao, W. Yu, D. Peng, K. de Vries, and A. J. Burggraaf, Key Eng. Materials, 61, 11 (1991)
  8. L. S. Wang and S. A. Barnett, Solid State Ionics, 61, 273, (1993) https://doi.org/10.1016/0167-2738(93)90391-F
  9. U. S. Patent, 3, 330, 676 (1967)
  10. J. P. duran, C. Moure, M. Villegas, J. Tartaj, A. C. Caballero, and J. F. Fernandez, J. Am. Ceram. Soc., 83, 1029 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01325.x
  11. K. W. Liu, G. C. Farrington, F. Chaput, and B. Dunn, J. Electrochem. Soc., 143, 879 (1996) https://doi.org/10.1149/1.1836552
  12. L. S. C. Zhang, G. L. Messing, W. Huebner, and M. M. Coleman, J. Mater. Res., 5, 1806 (1990) https://doi.org/10.1557/JMR.1990.1806
  13. M. C. Chen, E. M. Kelder, P. J. J. M. van der Put, and J. Schoonman, J. Mater. Chem., 6, 765 (1996) https://doi.org/10.1039/jm9960600765
  14. B. Kwon, J. Kim, and J. H. Park, J. Korean Ind. Eng. Chem., 19, 117 (2008)