흡수열펌프에서 나선형 관이 설치된 흡수기의 실험적 연구

An Experimental Study on Absorber with Spiral Tube in Absorption Heat Pump

  • 민병훈 (수원대학교 화공생명공학과)
  • Min, Byong-Hun (Department of Chemical Engineering, University of Suwon)
  • 투고 : 2009.09.30
  • 심사 : 2009.10.23
  • 발행 : 2010.02.10

초록

흡수식 열펌프는 흡수기 성능이 매우 중요하다. 메탄올과 글리세린을 작동유체로 하여 액상을 접선방향으로 공급하는 나선형 관이 설치된 흡수기의 실험적 연구가 수행되었다. 성능을 개선시키기 위해 흡수기의 조업조건에 따른 효과가 분석되었다. 용액의 유량과 냉각수의 유량이 증가할수록 흡수기의 성능에 긍정적인 효과가 나타났고, 반면에 용액의 농도가 증가할수록 흡수기 성능이 나빠졌다. 실험결과, 질량흡수 플럭스는 $0.2{\sim}0.6kgm^{-2}sec^{-1}$, 용액 열전달계수 값은 $1.6{\sim}4.2kwm^{-2}K^{-1}$, 냉각수에 전달된 에너지량($Q_{AB}$)은 0.9~1.5 kw, 그리고 물질전달계수 값은 0.9~1.7 m/sec를 얻었다.

The efficient performance of absorber is of great importance for the absorption heat pump cycle. The experimental study of absorber with spiral tube of tangential feeding of liquid phase has been investigated using methanol-glycerine as a working fluid. The effect of change in absorber operating conditions was analyzed to improve the performance. The increase in solution flow rate and cooling flow rate positively affects the absorber performance while an increse in the solution concentration negatively affects the absorber performance. The results showed that mass absorption flux was in the range of $0.2{\sim}0.6kgm^{-2}sec^{-1}$, the solution heat transfer coefficient between 1.6 and $4.2kwm^{-2}K^{-1}$, the absorber thermal load from 0.9 to 1.5kw and the mass transfer coefficient from 0.9 to 1.7 m/sec.

키워드

과제정보

연구 과제 주관 기관 : 수원대학교

참고문헌

  1. D. Daiguji, E. Haihara, and T. Saito, Int. J. Heat Mass Transfer, 40, 1743 (1997) https://doi.org/10.1016/S0017-9310(96)00290-6
  2. C. Kren, H. M. Hellmann, and F. Ziegler, Proceeding of the International Sorption Heat Pump Conference, Munich, 375 (1999)
  3. F. Ziegler and G. Grossman, Int. J. Refrigerat, 19, 301 (1996) https://doi.org/10.1016/S0140-7007(96)00032-1
  4. Z. Zhnegguo, X. Tao, and F. Xiaoming, Applied Thermal Engineering, 24, 2293 (2004) https://doi.org/10.1016/j.applthermaleng.2004.01.012
  5. W. L. Cheng, K. Houda, P. Hu, and T. Kashiwagi, Applied Thermal Engineering, 24, 281 (2004) https://doi.org/10.1016/j.applthermaleng.2003.08.013
  6. D. Arzoz, P. Rodriuuez, and M. Izquierdo, Applied Thermal Engineering, 25, 797 (2005) https://doi.org/10.1016/j.applthermaleng.2004.08.003
  7. G. Grossman, Int. J. Heat Mass Transfer, 26, 357 (1983) https://doi.org/10.1016/0017-9310(83)90040-6
  8. K. Guo, B. Shu, and L. Chen, J. Eng. Thermophys, 15, 408 (1996)
  9. E. Hihara and T. Saito, Int. J. Refrigerat, 16, 339 (1993) https://doi.org/10.1016/0140-7007(93)90006-T
  10. W. J. F. Setterwall, Chem. Eng. Sci., 50, 3077 (1995) https://doi.org/10.1016/0009-2509(95)00146-V
  11. Y. T. Kang, R. N. Christensen, and T. Kashiwagi, ASHRAE Trans, 104, 1 (1998)
  12. K. B. LEE, B. H. Chun, J. C. Lee, C. H. Chan, and S. H. Kim, Chem. Eng. Science, 57, 1923 (2002) https://doi.org/10.1016/S0009-2509(02)00089-1
  13. T. L. Merrill and H. Perez-Blanco, Int. J. of Heat and Mass transfer, 40, 589 (1997) https://doi.org/10.1016/0017-9310(96)00118-4
  14. J. Cerezo, M. Bourouis, M. Valles, A. Coronas, and R. Best, Applied Thermal Engineering, 29, 1005 (2009) https://doi.org/10.1016/j.applthermaleng.2008.05.012