참고문헌
- Olanow, C. W. and Tatton, W. G. (1999) Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22, 123-144 https://doi.org/10.1146/annurev.neuro.22.1.123
- Moore, D. J., West, A. B., Dawson, V. L. and Dawson, T. M. (2005) Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 28, 57-87 https://doi.org/10.1146/annurev.neuro.28.061604.135718
- Thomas, B. and Beal, M. F. (2007) Parkinson's disease. Hum. Mol. Genet. 16 Spec No. 2, R183-R194 https://doi.org/10.1093/hmg/ddm159
- Fahn, S. (2006) Levodopa in the treatment of Parkinson's disease. J. Neural. Transm. Suppl. 71, 1-15 https://doi.org/10.1007/978-3-211-33328-0_1
- Halpern, C., Hurtig, H., Jaggi, J., Grossman, M., Won, M. and Baltuch, G. (2007) Deep brain stimulation in neurologic disorders. Parkinsonism Relat. Disord. 13, 1-16 https://doi.org/10.1016/j.parkreldis.2006.03.001
- Lewthwaite, A. J. and Nicholl, D. J. (2005) Genetics of parkinsonism. Curr. Neurol. Neurosci. Rep. 5, 397-404 https://doi.org/10.1007/s11910-005-0064-6
- Belin, A. C. and Westerlund, M. (2008) Parkinson's disease: a genetic perspective. FEBS J. 275, 1377-1383 https://doi.org/10.1111/j.1742-4658.2008.06301.x
- Farrer, M., Wavrant-De Vrieze, F., Crook, R., Boles, L., Perez-Tur, J., Hardy, J., Johnson, W. G., Steele, J., Maraganore, D., Gwinn, K. and Lynch, T. (1998) Low frequency of alpha-synuclein mutations in familial Parkinson's disease. Ann. Neurol. 43, 394-397 https://doi.org/10.1002/ana.410430320
- Ibanez, P., Bonnet, A. M., Debarges, B., Lohmann, E., Tison, F., Pollak, P., Agid, Y., Durr, A. and Brice, A. (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 364, 1169-1171 https://doi.org/10.1016/S0140-6736(04)17104-3
- Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M. and Destee, A. (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167-1169 https://doi.org/10.1016/S0140-6736(04)17103-1
- Farrer, M., Kachergus, J., Forno, L., Lincoln, S., Wang, D. S., Hulihan, M., Maraganore, D., Gwinn-Hardy, K., Wszolek, Z., Dickson, D. and Langston, J. W. (2004) Comparison of kindreds with parkinsonism and alphasynuclein genomic multiplications. Ann. Neurol. 55, 174-179 https://doi.org/10.1002/ana.10846
- Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B. Stoessl, A. J., Pfeiffer, R. F., Patenge,N., Carbajal, I. C., Vieregge, P., Asmus, F., Muller-Myhsok, B., Dickson, D. W., Meitinger, T., Strom, T. M., Wszolek, Z. K. and Gasser, T. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607 https://doi.org/10.1016/j.neuron.2004.11.005
- Paisan-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simon, J., van der Brug, M., Lopez de Munain, A., Aparicio, S., Gil, A. M., Khan, N., Johnson, J., Martinez, J. R., Nicholl, D., Carrera, I. M., Pena, A. S., de Silva, R., Lees, A., Marti-Masso, J. F., Perez-Tur, J., Wood, N. W. and Singleton, A. B. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595-600 https://doi.org/10.1016/j.neuron.2004.10.023
- Satake, W., Nakabayashi, Y., Mizuta, I., Hirota, Y., Ito, C., Kubo, M., Kawaguchi, T., Tsunoda, T., Watanabe, M., Takeda, A. Tomiyama, H., Nakashima, K., Hasegawa, K., Obata, F., Yoshikawa, T., Kawakami, H., Sakoda, S., Yamamoto, M., Hattori, N., Murata, M., Nakamura, Y. and Toda, T. (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 1303-1307 https://doi.org/10.1038/ng.485
- Funayama, M., Hasegawa, K., Kowa, H., Saito, M., Tsuji, S. and Obata, F. (2002) A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol. 51, 296-301 https://doi.org/10.1002/ana.10113
- Bosgraaf, L. and Van Haastert, P. J. (2003) Roc, a Ras/GTPase domain in complex proteins. Biochim. Biophys. Acta. 1643, 5-10 https://doi.org/10.1016/j.bbamcr.2003.08.008
- Korr, D., Toschi, L., Donner, P., Pohlenz, H. D., Kreft, B. and Weiss, B. (2006) LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal 18, 910-920 https://doi.org/10.1016/j.cellsig.2005.08.015
- West, A. B., Moore, D. J., Biskup, S., Bugayenko, A., Smith, W. W., Ross, C. A., Dawson, V. L. and Dawson, T. M. (2005) Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. U.S.A. 102, 16842-16847 https://doi.org/10.1073/pnas.0507360102
- Smith, W. W., Pei, Z., Jiang, H., Dawson, V. L., Dawson, T. M. and Ross, C. A. (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 9, 1231-1233 https://doi.org/10.1038/nn1776
- Gandhi, P. N., Chen, S. G. and Wilson-Delfosse, A. L. (2009) Leucine-rich repeat kinase 2 (LRRK2): a key player in the pathogenesis of Parkinson's disease. J. Neurosci. Res. 87, 1283-1295 https://doi.org/10.1002/jnr.21949
- Lee, S. B., Kim, W., Lee, S. and Chung, J. (2007) Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem. Biophys. Res. Commun. 358, 534-539 https://doi.org/10.1016/j.bbrc.2007.04.156
- Sakaguchi-Nakashima, A., Meir, J. Y., Jin, Y., Matsumoto, K. and Hisamoto, N. (2007) LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr. Biol. 17, 592-598 https://doi.org/10.1016/j.cub.2007.01.074
- Simon-Sanchez, J., Herranz-Perez, V., Olucha-Bordonau, F. and Perez-Tur, J. (2006) LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain. Eur. J. Neurosci. 23, 659-666 https://doi.org/10.1111/j.1460-9568.2006.04616.x
- Melrose, H., Lincoln, S., Tyndall, G., Dickson, D. and Farrer, M. (2006) Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience 139, 791-794 https://doi.org/10.1016/j.neuroscience.2006.01.017
- Higashi, S., Moore, D. J., Colebrooke, R. E., Biskup, S., Dawson, V. L., Arai, H., Dawson, T. M. and Emson, P. C. (2007) Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. J. Neurochem. 100, 363-381
- Han, B. S., Iacovitti, L., Katano, T., Hattori, N., Seol, W. and Kim, K. S. (2008) Expression of the LRRK2 gene in the midbrain dopaminergic neurons of the substantia nigra. Neurosci. Lett. 442, 190-194 https://doi.org/10.1016/j.neulet.2008.06.086
- Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y. and Shimizu, N. (1998) Mutations in the parkin genecause autosomal recessive juvenile parkinsonism. Nature 392, 605-608 https://doi.org/10.1038/33416
- Unoki, M. and Nakamura, Y. (2001) Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 20, 4457-4465 https://doi.org/10.1038/sj.onc.1204608
- Hatano, T., Kubo, S., Imai, S., Maeda, M., Ishikawa, K., Mizuno, Y. and Hattori, N. (2007) Leucine-rich repeat kinase 2 associates with lipid rafts. Hum. Mol. Genet. 16, 678-690 https://doi.org/10.1093/hmg/ddm013
- Shin, N., Jeong, H., Kwon, J., Heo, H. Y., Kwon, J. J., Yun, H. J., Kim, C. H., Han, B. S., Tong, Y., Shen, J. Hatano, T., Hattori, N., Kim, K. S., Chang, S. and Seol, W (2008) LRRK2 regulates synaptic vesicle endocytosis. Exp. Cell Res. 314, 2055-2065 https://doi.org/10.1016/j.yexcr.2008.02.015
- Nichols, W. C., Pankratz, N., Hernandez, D., Paisan-Ruiz, C., Jain, S., Halter, C. A., Michaels, V. E., Reed, T., Rudolph, A., Shults, C. W., Singleton, A. and Foroud, T. (2005) Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet 365, 410-412
- Di Fonzo, A., Rohe, C. F., Ferreira, J., Chien, H. F., Vacca, L., Stocchi, F., Guedes, L., Fabrizio, E., Manfredi, M., Vanacore, N. Goldwurm, S., Breedveld, G., Sampaio, C., Meco, G., Barbosa, E., Oostra, B. A. and Bonifati, V. (2005) A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet 365, 412-415
- Gilks, W. P., Abou-Sleiman, P. M., Gandhi, S., Jain, S., Singleton, A., Lees, A. J., Shaw, K., Bhatia, K. P., Bonifati, V., Quinn, N. P. Lynch, J., Healy, D. G., Holton, J. L., Revesz, T. and Wood, N. W. (2005) A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 365, 415-416
- Tan, E. K., Zhao, Y., Skipper, L., Tan, M. G., Di Fonzo, A., Sun, L., Fook-Chong, S., Tang, S., Chua, E., Yuen, Y. Tan, L., Pavanni, R., Wong, M. C., Kolatkar, P., Lu, C. S., Bonifati, V. and Liu, J. J. (2007) The LRRK2 Gly2385Arg variant is associated with Parkinson's disease: genetic and functional evidence. Hum. Genet. 120, 857-863 https://doi.org/10.1007/s00439-006-0268-0
- Ross, O. A., Wu, Y. R., Lee, M. C., Funayama, M., Chen, M. L., Soto, A. I., Mata, I. F., Lee-Chen, G. J., Chen, C. M., Tang, M., Zhao, Y., Hattori, N., Farrer, M. J., Tan, E. K. and Wu, R. M. (2008) Analysis of Lrrk2 R1628P as a risk factor for Parkinson's disease. Ann. Neurol. 64, 88-92 https://doi.org/10.1002/ana.21405
- Healy, D. G., Falchi, M., O'Sullivan, S. S., Bonifati, V., Durr, A., Bressman, S., Brice, A., Aasly, J., Zabetian, C. P., Goldwurm, S. Ferreira, J. J., Tolosa, E., Kay, D. M., Klein, C., Williams, D. R., Marras, C., Lang, A. E., Wszolek, Z. K., Berciano, J., Schapira, A. H., Lynch, T., Bhatia, K. P., Gasser, T., Lees, A. J. and Wood, N. W. (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7, 583-590 https://doi.org/10.1016/S1474-4422(08)70117-0
- Ozelius, L. J., Senthil, G., Saunders-Pullman, R., Ohmann, E., Deligtisch, A., Tagliati, M., Hunt, A. L., Klein, C., Henick, B., Hailpern, S. M., Lipton, R. B., Soto-Valencia, J., Risch, N. and Bressman, S. B. (2006) LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 354, 424-425 https://doi.org/10.1056/NEJMc055509
- Saunders-Pullman, R., Lipton, R. B., Senthil, G., Katz, M., Costan-Toth, C., Derby, C., Bressman, S., Verghese, J. and Ozelius, L. J. (2006) Increased frequency of the LRRK2 G2019S mutation in an elderly Ashkenazi Jewish population is not associated with dementia. Neurosci. Lett. 402, 92-96 https://doi.org/10.1016/j.neulet.2006.03.044
- Lesage, S., Durr, A., Tazir, M., Lohmann, E., Leutenegger, A. L., Janin, S., Pollak, P. and Brice, A. (2006) LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N. Engl. J. Med. 354, 422-423 https://doi.org/10.1056/NEJMc055540
- Hulihan, M. M., Ishihara-Paul, L., Kachergus, J., Warren, L., Amouri, R., Elango, R., Prinjha, R. K., Upmanyu, R., Kefi, M., Zouari, M. Sassi, S. B., Yahmed, S. B., El Euch-Fayeche, G., Matthews, P. M., Middleton, L. T., Gibson, R. A., Hentati, F. and Farrer, M. J. (2008) LRRK2 Gly2019Ser penetrance in Arab-Berber patients from Tunisia: a case-control genetic study. Lancet Neurol. 7, 591-594 https://doi.org/10.1016/S1474-4422(08)70116-9
- Lesage, S., Patin, E., Condroyer, C., Leutenegger, A. L., Lohmann, E., Giladi, N., Bar-Shira, A., Belarbi, S., Hecham, N., Pollak, P. Ouvrard-Hernandez, A. M., Bardien, S., Carr, J., Benhassine, T., Tomiyama, H., Pirkevi, C., Hamadouche, T., Cazeneuve, C., Basak, A. N., Hattori, N., Durr, A., Tazir, M., Orr-Urtreger, A., Quintana-Murci, L. and Brice, A. (2010) Parkinson's disease-related LRRK2 G2019S mutation results from independent mutational events in humans. Hum. Mol. Genet. doi:10.1093/hmg/ddq081
- Tan, E. K., Tan, L. C., Lim, H. Q., Li, R., Tang, M., Yih, Y., Pavanni, R., Prakash, K. M., Fook-Chong, S. and Zhao, Y. (2008) LRRK2 R1628P increases risk of Parkinson's disease: replication evidence. Hum. Genet. 124, 287-288 https://doi.org/10.1007/s00439-008-0544-2
- Mata, I. F., Kachergus, J. M., Taylor, J. P., Lincoln, S., Aasly, J., Lynch, T., Hulihan, M. M., Cobb, S. A., Wu, R. M., Lu, C. S., Lahoz, C., Wszolek, Z. K. and Farrer, M. J. (2005) Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics 6, 171-177 https://doi.org/10.1007/s10048-005-0005-1
- Kay, D. M., Kramer, P., Higgins, D., Zabetian, C. P. and Payami, H. (2005) Escaping Parkinson's disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov. Disord. 20, 1077-1078 https://doi.org/10.1002/mds.20618
- Golub, Y., Berg, D., Calne, D. B., Pfeiffer, R. F., Uitti, R. J., Stoessl, A. J., Wszolek, Z. K., Farrer, M. J., Mueller, J. C., Gasser, T. and Fuchs, J. (2009) Genetic factors influencing age at onset in LRRK2-linked Parkinson disease. Parkinsonism Relat. Disord. 15, 539-541
- Haugarvoll, K., Rademakers, R., Kachergus, J. M., Nuytemans, K., Ross, O. A., Gibson, J. M., Tan, E. K., Gaig, C., Tolosa, E., Goldwurm, S. Guidi, M., Riboldazzi, G., Brown, L., Walter, U., Benecke, R., Berg, D., Gasser, T., Theuns, J., Pals, P., Cras, P., De Deyn, P. P., Engelborghs, S., Pickut, B., Uitti, R. J., Foroud, T., Nichols, W. C., Hagenah, J., Klein, C., Samii, A., Zabetian, C. P., Bonifati, V., Van Broeckhoven, C., Farrer, M. J. and Wszolek, Z. K. (2008) Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease. Neurology 70, 1456-1460 https://doi.org/10.1212/01.wnl.0000304044.22253.03
- Jaleel, M., Nichols, R. J., Deak, M., Campbell, D. G., Gillardon, F., Knebel, A. and Alessi, D. R. (2007) LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem. J. 405, 307-317 https://doi.org/10.1042/BJ20070209
- West, A. B., Moore, D. J., Choi, C., Andrabi, S. A., Li, X., Dikeman, D., Biskup, S., Zhang, Z., Lim, K. L., Dawson, V. L. and Dawson, T. M. (2007) Parkinson's diseaseassociated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet. 16, 223-232 https://doi.org/10.1093/hmg/ddl471
- MacLeod, D., Dowman, J., Hammond, R., Leete, T., Inoue, K. and Abeliovich, A. (2006) The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52, 587-593 https://doi.org/10.1016/j.neuron.2006.10.008
- Melrose, H. (2008) Update on the functional biology of Lrrk2. Future Neurol. 3, 669-681 https://doi.org/10.2217/14796708.3.6.669
- Greggio, E. and Cookson, M. R. (2009) Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro. 1, e00002
- Bretscher, A., Edwards, K. and Fehon, R. G. (2002) ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell. Biol. 3, 586-599 https://doi.org/10.1038/nrm882
- Parisiadou, L., Xie, C., Cho, H. J., Lin, X., Gu, X. L., Long, C. X., Lobbestael, E., Baekelandt, V., Taymans, J. M., Sun, L. and Cai, H. (2009) Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J. Neurosci. 29, 13971-13980 https://doi.org/10.1523/JNEUROSCI.3799-09.2009
- Gillardon, F. (2009) Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability - a point of convergence in Parkinsonian neurodegeneration? J. Neurochem. 110, 1514-1522 https://doi.org/10.1111/j.1471-4159.2009.06235.x
- Imai, Y., Gehrke, S., Wang, H. Q., Takahashi, R., Hasegawa, K., Oota, E. and Lu, B. (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27, 2432-2443 https://doi.org/10.1038/emboj.2008.163
- Tain, L. S., Mortiboys, H., Tao, R. N., Ziviani, E., Bandmann, O. and Whitworth, A. J. (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat. Neurosci. 12, 1129-1135 https://doi.org/10.1038/nn.2372
- Kumar, A., Greggio, E., Beilina, A., Kaganovich, A., Chan, D., Taymans, J. M., Wolozin, B. and Cookson, M. R. (2010) The Parkinson's disease associated LRRK2 exhibits weaker in vitro phosphorylation of 4E-BP compared to autophosphorylation. PLoS One 5, e8730 https://doi.org/10.1371/journal.pone.0008730
- Gloeckner, C. J., Schumacher, A., Boldt, K. and Ueffing, M. (2009) The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J. Neurochem. 109, 959-968 https://doi.org/10.1111/j.1471-4159.2009.06024.x
- Hsu, C. H., Chan, D., Greggio, E., Saha, S., Guillily, M. D., Ferree, A., Raghavan, K., Shen, G. C., Segal, L., Ryu, H., Cookson, M. R. and Wolozin, B. (2010) MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2. J. Neurochem. 112, 1593-1604 https://doi.org/10.1111/j.1471-4159.2010.06568.x
- Kamikawaji, S., Ito, G. and Iwatsubo, T. (2009) Identification of the autophosphorylation sites of LRRK2. Biochemistry 48, 10963-10975 https://doi.org/10.1021/bi9011379
- Nichols, R. J., Dzamko, N., Hutti, J. E., Cantley, L. C., Deak, M., Moran, J., Bamborough, P., Reith, A. D. and Alessi, D. R. (2009) Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease. Biochem. J. 424, 47-60 https://doi.org/10.1042/BJ20091035
- Narumiya, S. (1996) The small GTPase Rho: cellular functions and signal transduction. J. Biochem. 120, 215-228 https://doi.org/10.1093/oxfordjournals.jbchem.a021401
- Li, X., Tan, Y. C., Poulose, S., Olanow, C. W., Huang, X. Y. and Yue, Z. (2007) Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. J. Neurochem. 103, 238-247
- Guo, L., Gandhi, P. N., Wang, W., Petersen, R. B., Wilson-Delfosse, A. L. and Chen, S. G. (2007) The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp. Cell Res. 313, 3658-3670 https://doi.org/10.1016/j.yexcr.2007.07.007
- Lewis, P. A., Greggio, E., Beilina, A., Jain, S., Baker, A. and Cookson, M. R. (2007) The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem. Biophys. Res. Commun. 357, 668-671
- Deng, J., Lewis, P. A., Greggio, E., Sluch, E., Beilina, A. and Cookson, M. R. (2008) Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc. Natl. Acad. Sci. U.S.A. 105, 1499-1504 https://doi.org/10.1073/pnas.0709098105
- Ito, G., Okai, T., Fujino, G., Takeda, K., Ichijo, H., Katada, T. and Iwatsubo, T. (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 46, 1380-1388 https://doi.org/10.1021/bi061960m
- Liu, M., Dobson, B., Glicksman, M. A., Yue, Z. and Stein, R. L. (2010) Kinetic mechanistic studies of wild-type leucine-rich repeat kinase2: characterization of the kinase and GTPase activities. Biochemistry 49, 2008-2017 https://doi.org/10.1021/bi901851y
- Greggio, E., Jain, S., Kingsbury, A., Bandopadhyay, R., Lewis, P., Kaganovich, A., van der Brug, M. P., Beilina, A., Blackinton, J., Thomas, K. J. Ahmad, R., Miller, D. W., Kesavapany, S., Singleton, A., Lees, A., Harvey, R. J., Harvey, K. and Cookson, M. R. (2006) Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 23, 329-341 https://doi.org/10.1016/j.nbd.2006.04.001
- Gasper, R., Meyer, S., Gotthardt, K., Sirajuddin, M. and Wittinghofer, A. (2009) It takes two to tango: regulation of G proteins by dimerization. Nat. Rev. Mol. Cell Biol. 10, 423-429 https://doi.org/10.1038/nrm2689
- Sen, S., Webber, P. J. and West, A. B. (2009) Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J. Biol. Chem. 284, 36346-36356 https://doi.org/10.1074/jbc.M109.025437
- Greggio, E., Zambrano, I., Kaganovich, A., Beilina, A., Taymans, J. M., Daniels, V., Lewis, P., Jain, S., Ding, J., Syed, A., Thomas, K. J., Baekelandt, V. and Cookson, M. R. (2008) The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem. 283, 16906-16914 https://doi.org/10.1074/jbc.M708718200
- Gandhi, P. N., Wang, X., Zhu, X., Chen, S. G. and Wilson-Delfosse, A. L. (2008) The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J. Neurosci. Res. 86, 1711-1720 https://doi.org/10.1002/jnr.21622
- Dachsel, J. C., Taylor, J. P., Mok, S. S., Ross, O. A., Hinkle, K. M., Bailey, R. M., Hines, J. H., Szutu, J., Madden, B., Petrucelli, L. and Farrer, M. J. (2007) Identification of potential protein interactors of Lrrk2. Parkinsonism Relat. Disord. 13, 382-385 https://doi.org/10.1016/j.parkreldis.2007.01.008
- Wang, L., Xie, C., Greggio, E., Parisiadou, L., Shim, H., Sun, L., Chandran, J., Lin, X., Lai, C., Yang, W. J. Moore, D. J., Dawson, T. M., Dawson, V. L., Chiosis, G., Cookson, M. R. and Cai, H. (2008) The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J. Neurosci. 28, 3384-3391 https://doi.org/10.1523/JNEUROSCI.0185-08.2008
- Ko, H. S., Bailey, R., Smith, W. W., Liu, Z., Shin, J. H., Lee, Y. I., Zhang, Y. J., Jiang, H., Ross, C. A., Moore, D. J. Patterson, C., Petrucelli, L., Dawson, T. M. and Dawson, V. L. (2009) CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc. Natl. Acad. Sci. U.S.A. 106, 2897-2902 https://doi.org/10.1073/pnas.0810123106
- Ding, X. and Goldberg, M. S. (2009) Regulation of LRRK2 stability by the E3 ubiquitin ligase CHIP. PLoS One 4, e5949 https://doi.org/10.1371/journal.pone.0005949
- Ohta, E., Katayama, Y., Kawakami, F., Yamamoto, M., Tajima, K., Maekawa, T., Iida, N., Hattori, S. and Obata, F. (2009) I(2020)T leucine-rich repeat kinase 2, the causative mutant molecule of familial Parkinson's disease, has a higher intracellular degradation rate than the wildtype molecule. Biochem. Biophys. Res. Commun. 390, 710-715 https://doi.org/10.1016/j.bbrc.2009.10.034
- Ohta, E., Kubo, M. and Obata, F. (2010) Prevention of intracellular degradation of I2020T mutant LRRK2 restores its protectivity against apoptosis. Biochem. Biophys. Res. Commun. 391, 242-247 https://doi.org/10.1016/j.bbrc.2009.11.043
- Ho, C. C., Rideout, H. J., Ribe, E., Troy, C. M. and Dauer, W. T. (2009) The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J. Neurosci. 29, 1011-1016 https://doi.org/10.1523/JNEUROSCI.5175-08.2009
- Sancho, R. M., Law, B. M. and Harvey, K. (2009) Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways. Hum. Mol. Genet. 18, 3955-3968 https://doi.org/10.1093/hmg/ddp337
- Smith, W. W., Pei, Z., Jiang, H., Moore, D. J., Liang, Y., West, A. B., Dawson, V. L., Dawson, T. M. and Ross, C. A. (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl. Acad. Sci. U.S.A. 102, 18676-18681 https://doi.org/10.1073/pnas.0508052102
- Venderova, K., Kabbach, G., Abdel-Messih, E., Zhang, Y., Parks, R. J., Imai, Y., Gehrke, S., Ngsee, J., Lavoie, M. J., Slack, R. S. Rao, Y., Zhang, Z., Lu, B., Haque, M. E. and Park, D. S. (2009) Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease. Hum. Mol. Genet. 18, 4390-4404 https://doi.org/10.1093/hmg/ddp394
- Samann, J., Hegermann, J., von Gromoff, E., Eimer, S., Baumeister, R. and Schmidt, E. (2009) Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J. Biol. Chem. 284, 16482-16491 https://doi.org/10.1074/jbc.M808255200
- Lin, X., Parisiadou, L., Gu, X. L., Wang, L., Shim, H., Sun, L., Xie, C., Long, C. X., Yang, W. J., Ding, J. Chen, Z. Z., Gallant, P. E., Tao-Cheng, J. H., Rudow, G., Troncoso, J. C., Liu, Z., Li, Z. and Cai, H. (2009) Leucinerich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron 64, 807-827 https://doi.org/10.1016/j.neuron.2009.11.006
- Ng, C. H., Mok, S. Z., Koh, C., Ouyang, X., Fivaz, M. L., Tan, E. K., Dawson, V. L., Dawson, T. M., Yu, F. and Lim, K. L. (2009) Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J. Neurosci. 29, 11257-11162 https://doi.org/10.1523/JNEUROSCI.2375-09.2009
- Plowey, E. D., Cherra, S. J., 3rd, Liu, Y. J. and Chu, C. T. (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105, 1048-1056 https://doi.org/10.1111/j.1471-4159.2008.05217.x
- Liou, A. K., Leak, R. K., Li, L. and Zigmond, M. J. (2008) Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway. Neurobiol. Dis. 32, 116-124 https://doi.org/10.1016/j.nbd.2008.06.016
- Heo, H. Y., Park, J. M., Kim, C. H., Han, B. S., Kim, K. S. and Seol, W. (2010) LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. Exp. Cell Res. 316, 649-656 https://doi.org/10.1016/j.yexcr.2009.09.014
- Alegre-Abarrategui, J., Christian, H., Lufino, M., Mutihac, R., Lourenco Venda, L., Ansorge, O. and Wade-Martins, R. (2009) LRRK2 regulates autophagic activity and localises to specific membrane microdomains in a novel human genomic reporter cellular model. Hum. Mol. Genet. 18, 4022-4033 https://doi.org/10.1093/hmg/ddp346
- Iaccarino, C., Crosio, C., Vitale, C., Sanna, G., Carri, M. T. and Barone, P. (2007) Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum. Mol. Genet. 16, 1319-1326 https://doi.org/10.1093/hmg/ddm080
- Carballo-Carbajal, I., Weber-Endress, S., Rovelli, G., Chan, D., Wolozin, B., Klein, C. L., Patenge, N., Gasser, T. and Kahle, P. J. (2010) Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cell Signal 22, 821-827 https://doi.org/10.1016/j.cellsig.2010.01.006
- Li, Y., Liu, W., Oo, T. F., Wang, L., Tang, Y., Jackson-Lewis, V., Zhou, C., Geghman, K., Bogdanov, M., Przedborski, S., Beal, M. F., Burke, R. E. and Li, C. (2009) Mutant LRRK2 (R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat. Neurosci. 12, 826-828 https://doi.org/10.1038/nn.2349
- Tong, Y., Pisani, A., Martella, G., Karouani, M., Yamaguchi, H., Pothos, E. N. and Shen, J. (2009) R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc. Natl. Acad. Sci. U.S.A. 106, 14622-14627 https://doi.org/10.1073/pnas.0906334106
- Li, X., Patel, J. C., Wang, J., Avshalumov, M. V., Nicholson, C., Buxbaum, J. D., Elder, G. A., Rice, M. E. and Yue, Z. (2010) Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J. Neurosci. 30, 1788-1797 https://doi.org/10.1523/JNEUROSCI.5604-09.2010
- Saha, S., Guillily, M. D., Ferree, A., Lanceta, J., Chan, D., Ghosh, J., Hsu, C. H., Segal, L., Raghavan, K., Matsumoto, K. Matsumoto, K., Hisamoto, N., Kuwahara, T., Iwatsubo, T., Moore, L., Goldstein, L., Cookson, M. and Wolozin, B. (2009) LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J. Neurosci. 29, 9210-9218 https://doi.org/10.1523/JNEUROSCI.2281-09.2009
- Wang, D., Tang, B., Zhao, G., Pan, Q., Xia, K., Bodmer, R. and Zhang, Z. (2008) Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol. Neurodegener. 3, 3 https://doi.org/10.1186/1750-1326-3-3
- Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., Ren, Q., Jiao, Y., Sawa, A., Moran, T. Ross, C. A., Montell, C. and Smith, W. W. (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc. Natl. Acad. Sci. U.S.A. 105, 2693-2698 https://doi.org/10.1073/pnas.0708452105
- White, L. R., Toft, M., Kvam, S. N., Farrer, M. J. and Aasly, J. O. (2007) MAPK-pathway activity, Lrrk2 G2019S, and Parkinson's disease. J. Neurosci. Res. 85, 1288-1294 https://doi.org/10.1002/jnr.21240
- Mutez, E., Larvor, L., Lepretre, F., Mouroux, V., Hamalek, D., Kerckaert, J. P., Perez-Tur, J., Waucquier, N., Vanbesien-Mailliot, C., Duflot, A., Devos, D., Defebvre, L., Kreisler, A., Frigard, B., Destee, A. and Chartier- Harlin, M. C. (2010) Transcriptional profile of Parkinson blood mononuclear cells with LRRK2 mutation. Neurobiol. Aging. doi:10.1016/j.neurobiolaging. 2009.10.016
- Johansen, K. K., Wang, L., Aasly, J. O., White, L. R., Matson, W. R., Henchcliffe, C., Beal, M. F. and Bogdanov, M. (2009) Metabolomic profiling in LRRK2-related Parkinson's disease. PLoS One 4, e7551 https://doi.org/10.1371/journal.pone.0007551
- Church, W. H. and Ward, V. L. (1994) Uric acid is reduced in the substantia nigra in Parkinson's disease: effect on dopamine oxidation. Brain Res. Bull. 33, 419-425 https://doi.org/10.1016/0361-9230(94)90285-2
- Covy, J. P. and Giasson, B. I. (2009) Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2. Biochem. Biophys. Res. Commun. 378, 473-477 https://doi.org/10.1016/j.bbrc.2008.11.048
- Yue, Z. (2009) LRRK2 in Parkinson's disease: in vivo models and approaches for understanding pathogenic roles. FEBS J. 276, 6445-6454 https://doi.org/10.1111/j.1742-4658.2009.07343.x
- Webber, P. J. and West, A. B. (2009) LRRK2 in Parkinson's disease: function in cells and neurodegeneration. FEBS J. 276, 6436-6444 https://doi.org/10.1111/j.1742-4658.2009.07342.x
- Kumari, U. and Tan, E. K. (2009) LRRK2 in Parkinson's disease: genetic and clinical studies from patients. FEBS J. 276, 6455-6463 https://doi.org/10.1111/j.1742-4658.2009.07344.x
- Braithwaite, S. P. (2009) LRRK2 in Parkinson's disease:building an understanding of disease etiology. FEBS J. 276, 6427 https://doi.org/10.1111/j.1742-4658.2009.07340.x
- Anand, V. S. and Braithwaite, S. P. (2009) LRRK2 in Parkinson's disease: biochemical functions. FEBS J. 276, 6428-6435 https://doi.org/10.1111/j.1742-4658.2009.07341.x
- Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R. Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I. and Nussbaum, R. L. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047 https://doi.org/10.1126/science.276.5321.2045
- Gasser, T., Muller-Myhsok, B., Wszolek, Z. K., Oehlmann, R., Calne, D. B., Bonifati, V., Bereznai, B., Fabrizio, E., Vieregge, P. and Horstmann, R. D. (1998) A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nat. Genet. 18, 262-265 https://doi.org/10.1038/ng0398-262
- Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., Harta, G., Brownstein, M. J., Jonnalagada, S., Chernova, T., Dehejia, A., Lavedan, C., Gasser, T., Steinbach, P. J., Wilkinson, K. D. and Polymeropoulos, M. H. (1998) The ubiquitin pathway in Parkinson's disease. Nature 395, 451-452 https://doi.org/10.1038/26652
- Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A. R., Healy, D. G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W. P., Latchman, D. S., Harvey, R. J., Dallapiccola, B., Auburger, G. and Wood, N. W. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158-1160 https://doi.org/10.1126/science.1096284
- Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E., Dekker, M. C., Squitieri, F., Ibanez, P., Joosse, M. van Dongen, J. W., Vanacore, N., van Swieten, J. C., Brice, A., Meco, G., van Duijn, C. M., Oostra, B. A. and Heutink, P. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256-259 https://doi.org/10.1126/science.1077209
- Ramirez, A., Heimbach, A., Grundemann, J., Stiller, B., Hampshire, D., Cid, L. P., Goebel, I., Mubaidin, A. F., Wriekat, A. L., Roeper, J. Al-Din, A., Hillmer, A. M., Karsak, M., Liss, B., Woods, C. G., Behrens, M. I. and Kubisch, C. (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184-1191 https://doi.org/10.1038/ng1884
- Li, Y. J., Scott, W. K., Hedges, D. J., Zhang, F., Gaskell, P. C., Nance, M. A., Watts, R. L., Hubble, J. P., Koller, W.C., Pahwa, R., Stern, M. B., Hiner, B. C., Jankovic, J., Allen, F. A., Jr., Goetz, C. G., Mastaglia, F., Stajich, J. M., Gibson, R. A., Middleton, L. T., Saunders, A. M., Scott, B. L., Small, G. W., Nicodemus, K. K., Reed, A. D., Schmechel, D. E., Welsh-Bohmer, K. A., Conneally, P. M., Roses, A. D., Gilbert, J. R., Vance, J. M., Haines, J. L. and Pericak-Vance, M. A. (2002) Age at onset in two common neurodegenerative diseases is genetically controlled. Am. J. Hum. Genet. 70, 985-993 https://doi.org/10.1086/339815
- Lautier, C., Goldwurm, S., Durr, A., Giovannone, B., Tsiaras, W. G., Pezzoli, G., Brice, A. and Smith, R. J. (2008) Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. Am. J. Hum. Genet. 82, 822-833 https://doi.org/10.1016/j.ajhg.2008.01.015
- Pankratz, N., Nichols, W. C., Uniacke, S. K., Halter, C., Rudolph, A., Shults, C., Conneally, P. M. and Foroud, T. (2002) Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am. J. Hum. Genet. 71, 124-135 https://doi.org/10.1086/341282
- Strauss, K. M., Martins, L. M., Plun-Favreau, H., Marx, F. P., Kautzmann, S., Berg, D., Gasser, T., Wszolek, Z., Muller, T., Bornemann, A. Wolburg, H., Downward, J., Riess, O., Schulz, J. B. and Kruger, R. (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum. Mol. Genet. 14, 2099-2111 https://doi.org/10.1093/hmg/ddi215
- Paisan-Ruiz, C., Bhatia, K. P., Li, A., Hernandez, D., Davis, M., Wood, N. W., Hardy, J., Houlden, H., Singleton, A. and Schneider, S. A. (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann. Neurol. 65, 19-23 https://doi.org/10.1002/ana.21656
- Shojaee, S., Sina, F., Banihosseini, S. S., Kazemi, M. H., Kalhor, R., Shahidi, G. A., Fakhrai-Rad, H., Ronaghi, M. and Elahi, E. (2008) Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am. J. Hum. Genet. 82, 1375-1384 https://doi.org/10.1016/j.ajhg.2008.05.005
- Di Fonzo, A., Dekker, M. C., Montagna, P., Baruzzi, A., Yonova, E. H., Correia Guedes, L., Szczerbinska, A., Zhao, T., Dubbel-Hulsman, L. O., Wouters, C. H. de Graaff, E. Oyen, W. J., Simons, E. J., Breedveld, G. J., Oostra, B. A., Horstink, M. W. and Bonifati, V. (2009) FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240-245 https://doi.org/10.1212/01.wnl.0000338144.10967.2b
- Healy, D. G., Abou-Sleiman, P. M., Casas, J. P., Ahmadi, K. R., Lynch, T., Gandhi, S., Muqit, M. M., Foltynie, T., Barker, R., Bhatia, K. P. Quinn, N. P., Lees, A. J., Gibson, J. M., Holton, J. L., Revesz, T., Goldstein, D. B. and Wood, N. W. (2006) UCHL-1 is not a Parkinson's disease susceptibility gene. Ann. Neurol. 59, 627-633 https://doi.org/10.1002/ana.20757
- Nichols, W. C., Kissell, D. K., Pankratz, N., Pauciulo, M. W., Elsaesser, V. E., Clark, K. A., Halter, C. A., Rudolph, A., Wojcieszek, J., Pfeiffer, R.F. and Foroud, T. (2009) Variation in GIGYF2 is not associated with Parkinson disease. Neurology 72, 1886-1892 https://doi.org/10.1212/01.wnl.0000346517.98982.1b
- Vilarino-Guell, C., Ross, O. A., Soto, A. I., Farrer, M. J., Haugarvoll, K., Aasly, J. O., Uitti, R. J. and Wszolek, Z. K. (2009) Reported mutations in GIGYF2 are not a common cause of Parkinson's disease. Mov. Disord. 24, 619-620 https://doi.org/10.1002/mds.22451
피인용 문헌
- Leucine-rich repeats containing protein functions in the antibacterial immune reaction in stomach of kuruma shrimp Marsupenaeus japonicus vol.61, 2017, https://doi.org/10.1016/j.fsi.2016.12.029
- Mitochondrial dysfunction in Parkinson’s disease vol.5, pp.4, 2011, https://doi.org/10.1134/S1990750811040032
- Interactions between cell adhesion and the synaptic vesicle cycle in Parkinson’s disease vol.83, pp.2, 2014, https://doi.org/10.1016/j.mehy.2014.04.029
- Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation 2016, https://doi.org/10.1093/hmg/ddw363
- LRRK2 directly phosphorylates Akt1 as a possible physiological substrate: Impairment of the kinase activity by Parkinson's disease-associated mutations vol.585, pp.14, 2011, https://doi.org/10.1016/j.febslet.2011.05.044
- Leucine-rich repeat kinase 2 inhibitors: a review of recent patents (2011 – 2013) vol.24, pp.7, 2014, https://doi.org/10.1517/13543776.2014.907275
- Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21WAF1/CIP1 expression vol.8, pp.1, 2015, https://doi.org/10.1186/s13041-015-0145-7
- LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25 vol.45, pp.8, 2013, https://doi.org/10.1038/emm.2013.68
- Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond vol.24, pp.19, 2014, https://doi.org/10.1016/j.bmcl.2014.08.049
- Structural and functional in silico analysis of LRRK2 missense substitutions vol.41, pp.4, 2014, https://doi.org/10.1007/s11033-014-3111-z
- LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein vol.9, pp.1, 2012, https://doi.org/10.1186/1742-2094-9-261
- Widespread microRNA dysregulation in multiple system atrophy - disease-related alteration in miR-96 vol.39, pp.6, 2014, https://doi.org/10.1111/ejn.12444
- Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3 vol.111, pp.1, 2014, https://doi.org/10.1073/pnas.1312701111
- Dexamethasone induces the expression of LRRK2 and α-synuclein, two genes that when mutated cause Parkinson's disease in an autosomal dominant manner vol.46, pp.9, 2013, https://doi.org/10.5483/BMBRep.2013.46.9.234
- Increased DJ-1 in Urine Exosome of Korean Males with Parkinson’s Disease vol.2014, 2014, https://doi.org/10.1155/2014/704678
- RIP kinases: key decision makers in cell death and innate immunity vol.22, pp.2, 2015, https://doi.org/10.1038/cdd.2014.126
- The Potential Mutation of GAK Gene in the Typical Sporadic Parkinson’s Disease from the Han Population of Chinese Mainland vol.53, pp.10, 2016, https://doi.org/10.1007/s12035-015-9595-2
- Current understanding of LRRK2 in Parkinson’s disease: biochemical and structural features and inhibitor design vol.4, pp.13, 2012, https://doi.org/10.4155/fmc.12.110
- Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease vol.49, pp.3, 2017, https://doi.org/10.1038/emm.2016.159
- LRRK2, a puzzling protein: Insights into Parkinson's disease pathogenesis vol.261, 2014, https://doi.org/10.1016/j.expneurol.2014.05.025
- G2385R and I2020T Mutations Increase LRRK2 GTPase Activity vol.2016, 2016, https://doi.org/10.1155/2016/7917128
- Small Molecule Kinase Inhibitors for LRRK2 and Their Application to Parkinson's Disease Models vol.3, pp.3, 2012, https://doi.org/10.1021/cn200117j
- LRRK2 impairs autophagy by mediating phosphorylation of leucyl-tRNA synthetase pp.02636484, 2018, https://doi.org/10.1002/cbf.3364
- Identification of key target genes and biological pathways in multiple sclerosis brains using microarray data obtained from the Gene Expression Omnibus database vol.40, pp.10, 2018, https://doi.org/10.1080/01616412.2018.1497253
- Effect of leucine-rich repeat kinase 2 (LRRK2) on protein synthesis vol.22, pp.1, 2018, https://doi.org/10.1080/19768354.2017.1422803
- Characterization of Parkinson’s disease-related pathogenic TMEM230 mutants vol.22, pp.2, 2018, https://doi.org/10.1080/19768354.2018.1453545