Synthesis and Photovoltaic Properties of Low Band Gap π-Cojugated Polymer Based on 4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole

4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole을 기본으로 한 고분자의 합성 및 광전변환 특성

  • Shin, Woong (Department of Polymer Engineering, Pukyong National University) ;
  • You, Hyeri (Department of Polymer Engineering, Pukyong National University) ;
  • Park, Jeong Bae (Department of Polymer Engineering, Pukyong National University) ;
  • Park, Sang Jun (Department of Polymer Engineering, Pukyong National University) ;
  • Jeong, Mi Seon (Department of Polymer Engineering, Pukyong National University) ;
  • Moon, Myung-Jun (Department of Industrial Chemistry, Pukyong National University) ;
  • Kim, Joo Hyun (Department of Polymer Engineering, Pukyong National University)
  • 신웅 (부경대학교 응용화학공학부 고분자공학전공) ;
  • 유혜리 (부경대학교 응용화학공학부 고분자공학전공) ;
  • 박정배 (부경대학교 응용화학공학부 고분자공학전공) ;
  • 박상준 (부경대학교 응용화학공학부 고분자공학전공) ;
  • 정미선 (부경대학교 응용화학공학부 고분자공학전공) ;
  • 문명준 (부경대학교 응용화학공학부 공업화학전공) ;
  • 김주현 (부경대학교 응용화학공학부 고분자공학전공)
  • Received : 2009.01.22
  • Accepted : 2009.07.06
  • Published : 2010.04.10

Abstract

Poly [4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole]-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene (PPVTBT) was synthesized by the Heck coupling reaction between 4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole and 1,4-bis(dodecyloxy)-2,5-divinylbenzene. The maximum absorption and band gap of PPVTBT were 550 nm and 1.74 eV, respectively. The HOMO and LUMO energy level of PPVTBT were -5.24 eV and -3.50 eV, respectively. The photovoltaic device based on the blend of PPVTBT and (6)-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]-$C_{61}$ (PCBM) (1 : 6 by weight ratio) was fabricated. The efficiency of device was 0.16%. The short circuit current density (Jsc), fill factor (FF) and open-circuit voltage (Voc) of the device was $0.74mA/cm^{2}$, 31% and 0.71 V, respectively, under AM 1.5 G and 1 sun condition ($100mA/cm^{2}$).

4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole과 1,4-bis(dodecyloxy)-2,5-divinylbenzene을 Heck coupling 중합법을 이용하여 poly[4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole]-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene (PPVTBT) 공중합체를 합성하였다. 합성한 PPVTBT의 최대흡수파장과 band gap은 각각 550 nm와 1.74 eV이고 HOMO와 LUMO enegry level은 각각 -5.24 eV, -3.50 eV로 나타났다. 합성한 공중합체인 PPVTBT와 (6)-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]-$C_{61}$(PCBM)을 1 : 6의 중량비로 blend하여 제작한 소자의 효율은 AM 1.5 G, 1 sun 조건($100mA/cm^{2}$)에서 0.16%의 효율을 보였다. 그리고 소자의 Jsc (short circuit current), FF (fill factor)와 Voc (open circuit voltage)는 각각 $0.74mA/cm^{2}$, 31%, 0.71 V로 나타났다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. C. W. Tang, Appl. Phys. Lett., 48, 183 (1986) https://doi.org/10.1063/1.96937
  2. G. Yu, J. Cao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995) https://doi.org/10.1126/science.270.5243.1789
  3. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, Appl. Phys. Let., 68, 3120 (1996) https://doi.org/10.1063/1.115797
  4. G. Yu and A. J. Heeger, J. Appl. Phys., 78, 4510 (1995) https://doi.org/10.1063/1.359792
  5. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Func. Mater., 11, 15 (2001) https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  6. M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, Nature, 397, 257 (1998)
  7. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Materials, 4, 864 (2005) https://doi.org/10.1038/nmat1500
  8. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Fun. Mater., 15, 1617 (2005) https://doi.org/10.1002/adfm.200500211
  9. M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, O. Ingan$\ddot{a}$s, and M. R. Andersson, Adv. Mater (Weinheim,Ger.), 15, 988 (2003) https://doi.org/10.1002/adma.200304150
  10. Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, Appl. Phys. Lett., 84, 1653 (2004) https://doi.org/10.1063/1.1667614
  11. J. H. Kim and H. Lee, Synth. Met., 157, 1040 (2007) https://doi.org/10.1016/j.synthmet.2007.10.013
  12. K. Pilgram, M. Zupan, and R. Skile, J. Heterocycl. Chem., 6, 629 (1970)
  13. J. H. Kim and H. Lee, Chem. Mater., 14, 2270 (2002) https://doi.org/10.1021/cm011553r
  14. R. F. Heck, Org. React., 27, 345 (1982)
  15. I. P. Beletskaya and A. V. Cheprakov, Chem. Rev., 100, 3009 (2000) https://doi.org/10.1021/cr9903048
  16. R. Grisorio, P. Mastrorilli, C. F. Nobile, G. Romanazzi, G. P. Suranna, G. Gigli, C. Piliego, O. G. Ciccarella, P. Cosma, D. Acierno, and E. Amendola, Macromolecules, 40, 4865 (2007) https://doi.org/10.1021/ma070221q
  17. C. G. Bangcuyo, U. Evans, M. L. Myrick, and U. H. F. Bunz, Macromolecules, 34, 7592 (2001) https://doi.org/10.1021/ma0112772
  18. J. M. Kroon, M. M. Wienk, W. J. H Verhees, and J. C. Hummelen, Thin Solid Films, 403, 223 (2002) https://doi.org/10.1016/S0040-6090(01)01589-9
  19. C. Wu, Strum, J. C. Register, R. A. Tian, J. Dana, and E. P. Thompson, M. E. IEEE Trans. Electron Devices, 44, 1269 (1997) https://doi.org/10.1109/16.605468
  20. C. Shi, Y. Yao, Y. Yang, and Q. Pei, J. Am. Chem. Soc., 128 8980 (2006) https://doi.org/10.1021/ja061664x
  21. C. P. Chen, S. H. Chan, T. C. Chao, C. Ting, and B. T. Ko, J. Am. Chem. Soc., 130, 12828 (2008) https://doi.org/10.1021/ja801877k
  22. O. Inganas, L. S. Roman, F. L. Zhang, D. M. Johansson, M. R. Andersson, and J. C. Hummelen, Synth. Met., 121, 1525 (2001) https://doi.org/10.1016/S0379-6779(00)01448-X
  23. S. Chan, C. Chen, T. Cao, T. C. Ting, and B. Ko, Macromolecules, 41, 5519 (2008) https://doi.org/10.1021/ma800494k