References
- Farley, B. and Ryder, S. (2008) Regulation of maternal mRNAs in early development. Crit. Rev. Biochem. Mol. Biol. 43, 135-162 https://doi.org/10.1080/10409230801921338
- Vardy, L. and Orr-Weaver, T. (2007) Regulating translation of maternal messages: multiple repression mechanisms. Trends Cell Biol. 17, 547-554 https://doi.org/10.1016/j.tcb.2007.09.002
- Evans, T. C. and Hunter, C. P. (2005) Translational control of maternal RNAs (November 10, 2005), WormBook, ed. The C. elegans Research Community, WormBook, doi/ 10.1895/wormbook.1.34.1, http://www.wormbook.org
- Kuersten, S. and Goodwin, E. (2003) The power of the 3'-UTR: translational control and development. Nat. Rev. Genet. 4, 626-637 https://doi.org/10.1038/nrg1125
- Cowan, C. and Hyman, A. (2007) Acto-myosin reorganization and PAR polarity in C. elegans. Development 134, 1035-1043 https://doi.org/10.1242/dev.000513
- Galli, M. and van den Heuvel, S. (2008) Determination of the cleavage plane in early C. elegans embryos. Annu. Rev. Genet. 42, 389-411 https://doi.org/10.1146/annurev.genet.40.110405.090523
- Gonczy, P. (2008) Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell. Biol. 9, 355-366 https://doi.org/10.1038/nrm2388
- Goldstein, B. and Macara, I. (2007) The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609-622 https://doi.org/10.1016/j.devcel.2007.10.007
- Suzuki, A. and Ohno, S. (2006) The PAR-aPKC system; lessons in polarity. J. Cell. Sci. 119, 979-998 https://doi.org/10.1242/jcs.02898
- Nance, J. (2005) PAR proteins and the establishment of cell polarity during C. elegans development. BioEssays 27, 126-135 https://doi.org/10.1002/bies.20175
- Hao, Y., Boyd, L. and Seydoux, G. (2006) Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev. Cell 10, 199-208
- Labbe, J-C., Pacquelet, A., Marty, T. and Gotta, M. (2006) A genomewide screen for suppressors of par-2 uncovers potential regulators of PAR-protein dependent cell polarity in Caenorhabditis elegans. Genetics. 174, 285-295 https://doi.org/10.1534/genetics.106.060517
- Hyenne, V., Desrosiers, M. and Labbe, J-C. (2008) C. elegans Brat homologs regulate PAR protein-dependent polarity and asymmetric cell division. Dev. Biol. 321, 368-378 https://doi.org/10.1016/j.ydbio.2008.06.037
- Sonoda, J. and Wharton, R. (2001) Drosophila Brain Tumor is a translational repressor. Genes. Dev. 15, 762-773 https://doi.org/10.1101/gad.870801
- Pacquelet, A., Zanin, E., Ashiono, C. and Gotta, M. (2008) PAR-6 levels are regulated by NOS-3 in a CUL-2 dependent manner in Caenorhabditis elegans. Dev. Biol. 319, 267-272 https://doi.org/10.1016/j.ydbio.2008.04.016
- Kraemer, B., Crittenden, S., Gallegos, M., Moulder, G., Barstead, R., Kimble, J. and Wickens, M. (1999) NANOS-3 and FBF proteins physically interact to control the spermoocyte switch in Caenorhabditis elegans. Cur. Biol. 9, 1009-1018 https://doi.org/10.1016/S0960-9822(99)80449-7
- Starostina, N., Lim, J-M., Schvarzstein, M., Wells, L., Spence, A. and Kipreos, E. (2007) A CUL-2 ubiquitin ligase containing three FEM proteins degrades TRA-1 to regulate C. elegans sex determination. Dev. Cell 13, 127-139 https://doi.org/10.1016/j.devcel.2007.05.008
- DeRenzo, C., Reese, K. and Seydoux, G. (2003) Exclusion of germ plasm proteins from somatic lineage by cullin-dependent degradation. Nature 424, 685-689 https://doi.org/10.1038/nature01887
- Liu, J., Vasudevan, S. and Kipreos, E. (2004) CUL-2 and ZYG-11 promote meiotic anaphase II and the proper placement of the anterior-posterior axis in C. elegans. Development 131, 3515-3525
- Lee, C-Y., Wilkinson, B., Siegrist, S., Wharton, R. and Doe, C. (2006) Brat is a Miranda cargo protein that promotes neuronal differentiation and neuroblast self renewal. Dev. Cell 10, 441-449 https://doi.org/10.1016/j.devcel.2006.01.017
- Frank, D. and Roth, M. (1998) ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J. Cell. Sci. 140, 1321-1329 https://doi.org/10.1083/jcb.140.6.1321
- Gudgen, M., Chandrasekaran, A, Frazier, T. and Boyd, L. (2004) Interactions within the ubiquitin pathway of Caenorhabditis elegans. Biochem. Biophys. Res. Comm. 325, 479-486 https://doi.org/10.1016/j.bbrc.2004.10.047
- Bowerman, B. and Kurz, T. (2006) Degrade to create: developmental requirements for ubiquitin mediated proteolysis during early C. elegans embryogenesis. Development 133, 773-784 https://doi.org/10.1242/dev.02276
- Schubert, C., Lim, R., de Vries, D., Plastert, R. and Priess, J. (2000) MEX-5 and MEX-6 function to establish soma/ germline asymmetry in early C. elegans embryos. Mol. Cell 5, 671-682 https://doi.org/10.1016/S1097-2765(00)80246-4
- Ogura, K-I., Kishimoto, N., Mitani, S., Gengyo-Ando, K. and Kohara, Y. (2003) Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development 140, 2495-2503
- Reese, K., Dunn, M., Waddle, J. and Seydoux, G. (2000) Asymmetric segregation of PIE-1 in C. elegans is mediated by two complimentary mechanisms that act through separate PIE-1 protein domains. Mol. Cell. 6, 445-455 https://doi.org/10.1016/S1097-2765(00)00043-5
- Pagano, J., Farley, B., McCoig, L. and Ryder, S. (2007) Molecular basis of RNA recognition by the embryonic polarity determinant MEX-5. J. Biol. Chem. 282, 8883-8894 https://doi.org/10.1074/jbc.M700079200
- Tenlen, J., Schisa, J., Diede, S. and Page, B. (2006) Reduceddosage of pos-1 suppresses Mex mutants and reveals complex interaction among CCCH zinc-finger proteins during Caenorhabditis elegans embryogenesis. Genetics 174, 1933-1945 https://doi.org/10.1534/genetics.105.052621
- Mello, C., Draper, B. and Priess, J. (1994) The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo. Cell 77, 95-106 https://doi.org/10.1016/0092-8674(94)90238-0
- Marin, V. and Evans, T. (2003) Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 130, 2623-2632 https://doi.org/10.1242/dev.00486
- Lei, H., Liu, J., Fukushige, T., Fire, A. and Kraus, M. (2009) Caudal-like PAL-1 directly activates the bodywall muscle module regulator hlh-1 in C. elegans to initiate the embryonic muscle gene regulatory network. Development 136, 1241-1249 https://doi.org/10.1242/dev.030668
- Edgar, L., Carr, S., Wang, H. and Wood, W. (2001) Zygotic expression of the caudal homolog pal-1 is required for posterior patterning in Caenorhabditis elegans embryogenesis. Dev. Biol. 229, 71-88 https://doi.org/10.1006/dbio.2000.9977
- Mlodzik, M., Gibson, G. and Gehring, W. (1990) Effects of ectopic expression of caudal during Drosophila development. Development 109, 271-277
- Hunter, C. and Kenyon, C. (1996) Spatial and temporal controls target pal-1 blastomere specification activity to a single blastomere lineage in C. elegans embryo. Cell 87, 217-226 https://doi.org/10.1016/S0092-8674(00)81340-9
- Bowerman, B., Ingran, M. and Hunter, C. (1997) The maternal par genes and the segregation of cell fate specification activities in early Caenorhabditis elegans embryos. Development 124, 3815-3826
- Mootz, D., Ho, D. and Hunter, C. (2004) The STAR/Maxi-KH domain protein GLD-1 mediates a developmental switch in the translational control of C. elegans PAL-1. Development 131, 3263-3272 https://doi.org/10.1242/dev.01196
- Huang, N., Mootz, D., Albertha, J., Walhout, J., Vidal, M. and Hunter, C. (2002) MEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans. Development 129, 747-759
- Pagano, J., Farley, B., Essien, K. and Ryder, S. (2009) RNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3. Proc. Natl. Acad. Sci. U.S.A. 106, 20252-20257 https://doi.org/10.1073/pnas.0907916106
- Jadhav, S., Rana, M. and Subramaniam, K. (2008) Multiple maternal proteins coordinate to restrict the translation of C. elegans nanos-2 to primordial germ cells. Development 135, 1803-1812 https://doi.org/10.1242/dev.013656
- Farley, B., Pagano, J. and Ryder, S. (2008) RNA target specificity of the embryonic cell fate determinant POS-1. RNA 14, 2685-2697 https://doi.org/10.1261/rna.1256708
- McNally, K., Audhya, A., Oegema, K. and McNally, F. (2006) Katanin controls mitotic and meiotic spindle length. J. Cell. Biol. 175, 881-891 https://doi.org/10.1083/jcb.200608117
- Kurz, T., Pintard, L., Willis, J., Hamill, D., Gonczy, P., Peter, M. and Bowerman, B. (2002) Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway. Science 295, 1294-1298 https://doi.org/10.1126/science.1067765
- Srayko, M., Buster, D., Bazirgan, O., McNally, F. and Mains, P. (2000) MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes. Dev. 14,1072-1084
- Clark-Maguire, S. and Mains, P. (1994) Localization of the mei-1 gene product of Caenorhabditis elegans, a meiotic- specific spindle component. J. Cell. Biol. 126, 199-209 https://doi.org/10.1083/jcb.126.1.199
- Johnson, J-L., Lu, C., Raharjo, E., McNally, K., McNally, F. and Mains, P. (2009) Levels of the ubiquitin ligase substrate adaptor MEL-26 are inversely correlated with MEI- 1/katanin microtubule-severing activity during both meiosis and mitosis. Dev. Biol. 330, 349-357 https://doi.org/10.1016/j.ydbio.2009.04.004
- Lu, C. and Mains, P. (2007) The C. elegans anaphase promoting complex and MBK-2/DYRK kinase act redundantly with CUL-3/MEL-26 ubiquitin ligase to degrade MEI-1 microtubule- severing activity after meiosis. Dev. Biol. 302, 438-447 https://doi.org/10.1016/j.ydbio.2006.09.053
- Pang, K., Ishidate, T., Nakamura, K., Shirayama, M., Trzepacz, C., Schubert, C., Priess, J. and Mello, C. (2004) The minibrain kinase homolog, mbk-2, is required for spindle positioning and asymmetric cell division in early C. elegans embryos. Dev. Biol. 265, 127-139 https://doi.org/10.1016/j.ydbio.2003.09.024
- Pellettieri, J., Reinke, V., Kim, S. K. and Seydoux, G. (2003). Coordinated activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev. Cell. 5, 451-462 https://doi.org/10.1016/S1534-5807(03)00231-4
- Pintard, L., Kurz, T., Glaser, S, Willis, J, Peter, M. and Bowerman, B. (2003) Neddylation and deneddylation of CUL-3 is required to target MEI-1/katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr. Biol. 13, 911-921 https://doi.org/10.1016/S0960-9822(03)00336-1
- Pintard, L., Willis, J., Willems, A., Johnson, J., Srayko, M., Kurz, T., Glaser, S., Mains, P., Tyers, M. and Bowerman, B. (2003). The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311-316 https://doi.org/10.1038/nature01959
- Quintin, S., Mains, P., Zinke, A. and Hyman, A. (2003). The mbk-2 kinase is required for inactivation of MEI-1/katanin in the one-cell Caenorhabditis elegans embryo. EMBO Rep. 4, 1175-1181 https://doi.org/10.1038/sj.embor.7400029
- Stitzel, M., Pellettieri, J. and Seydoux, G. (2006) The C. elegans DYRK Kinase MBK-2 marks oocyte proteins for degradation in response to meiotic maturation. Curr. Biol. 16, 56-62 https://doi.org/10.1016/j.cub.2005.11.063
- Stitzel., M., Cheng, K. and Seydoux, G. (2007) Regulation of MBK-2/DYRK kinase by dynamic cortical anchoring during the oocyte-to-zygote transition. Curr. Biol. 17, 1545-1554 https://doi.org/10.1016/j.cub.2007.08.049
- Li, W., DeBella, L., Guven-Ozkan, T., Lin, R. and Rose, L. (2009) An eIF4E-binding protein regulates katanin protein levels in C. elegans embryos. J. Cell. Biol. 187, 33-42 https://doi.org/10.1083/jcb.200903003
- Nakamura, A., Sato, K. and Hanyu-Nakamura, K. (2004) Drosophila Cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell. 6, 69-78 https://doi.org/10.1016/S1534-5807(03)00400-3
- Nelson, M., Leidal, A. and Smibert, C. (2004) Drosophila Cup is an eIF4E-binding protein that functions in Smaugmediated translational repression. EMBO J. 23, 150-159 https://doi.org/10.1038/sj.emboj.7600026
- Nishi, Y. and Lin, R. (2005) DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Dev. Biol. 288, 139-149 https://doi.org/10.1016/j.ydbio.2005.09.053
- Shirayama, M., Soto, M., Ishidate, T., Kim, S., Nakamura, K., Bei, Y., van den Heuvel, S. and Mello. C. (2006) The conserved kinases CDK-1, GSK-3, KIN-19, and MBK-2 promote OMA-1 destruction to regulate the oocyte-to-embryo transition in C. elegans. Curr. Biol. 16, 47-55 https://doi.org/10.1016/j.cub.2005.11.070
- DeBella, L, Hayashi, A. and Rose, L. (2006) LET-711, the Caenorhabditis elegans NOT1 ortholog, is required for spindle positioning and regulation of microtubule length in embryos. Mol. Biol. Cell. 17, 4911-4924 https://doi.org/10.1091/mbc.E06-02-0107
- Collart, M. and Timmers, H. (2004) The eukayotic Ccr4-Not complex: a regulatory platform integrating mRNA metabolism with cellular signaling pathways. Prog. Nucleic. Acid. Res. Mol. Biol. 77, 289-322 https://doi.org/10.1016/S0079-6603(04)77008-7
- Cui, Y., Ramnarain, D., Chiang, Y., Ding, L., McMahon, J. and Denis, C. (2008) Genome wide expression analysis of CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes. Mol. Genet. Genomics. 279, 323-337 https://doi.org/10.1007/s00438-007-0314-1
- Panasenko, O., Landrieux, E., Feuermann, M, Finka, A., Paquet, N. and Collart, M. (2006) The yeast Ccr4-Not complex controls uniquitination of the nascent-associated polypeptide (NAC-EGD) complex. J. Biol. Chem. 281, 31389-31398 https://doi.org/10.1074/jbc.M604986200
- Albert, T., Hanzawa, H., Legtenberg, Y., de Ruwe, M., van den Heuvel, F., Collart, M., Boelens, R. and Timmers, H. (2002) Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO J. 21, 355-364 https://doi.org/10.1093/emboj/21.3.355
- Gallo, C., Munro, E., Rasoloson, D., Merritt, C. and Seydoux, G. (2008) Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryo. Dev. Biol. 323, 76-87 https://doi.org/10.1016/j.ydbio.2008.07.008
Cited by
- POS-1 Promotes Endo-mesoderm Development by Inhibiting the Cytoplasmic Polyadenylation of neg-1 mRNA vol.34, pp.1, 2015, https://doi.org/10.1016/j.devcel.2015.05.024
- Translational regulation of the cell cycle: when, where, how and why? vol.366, pp.1584, 2011, https://doi.org/10.1098/rstb.2011.0084
- Polarity-Dependent Asymmetric Distribution and MEX-5/6–Mediated Translational Activation of the Era-1 mRNA in C. elegans Embryos vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0120984