전이금속촉매를 사용한 DFP 분해 성능 연구

Decomposition Studies of DFP Using Transition Metal Catalysts

  • 투고 : 2010.01.11
  • 발행 : 2010.02.10

초록

Cu(II)와 diamine, aminothiol 그리고 dithiol과의 착물을 합성하여, 동일한 조건 하에서 DFP 분해반응성을 평가하였다. 실험결과 Lewis basicity가 높은 유기물질일수록 DFP의 분해반응을 촉진시키는 것으로 나타났다. N donor인 diamine에 비해 전자를 더 잘 제공하는 S donor를 가진 aminothiol과 결합된 Cu(II) 착물이 DFP의 가수분해 반응에 약 3배 정도 효과적인 것으로 분석되었다. Lewis basicity가 더 높은 dithiol 리간드를 사용한 경우 Cu(II)(1,2-ethane dithiol)$(NO_3)_2$의 난용성으로 인해 heterogeneous 조건하에서 반응속도를 측정하였음에도 homogeneous 조건하에서 측정한 Cu(II) (ethylenediamine)$(NO_3)_2$ 반응보다 약 1.6배 효과적이었다. DFP 분해에 대한 제올라이트의 반응성 평가에서 NaY의 경우 DFP 가수분해 반응을 촉진시키지 못하였으며, RuNaY는 DFP분해 반응이 Cu(II)-organic complex의 반응성에 비해서는 효과가 떨어지는 것으로 관찰되었다.

Cu(II)-organic complexes were synthesized with Lewis base organic ligands including diamine, aminothiol, and dithiol to determine the reactivity for DFP hydrolysis. Results show that the aminothiol catalyst enhances the hydrolysis of DFP in three folds compared to diamine type because aminothiol has higher basicity than diamine. Due to low solubility of Cu(II)(1,2-ethane dithiol)$(NO_3)_2$, it is impossible to compare directly the rates in homogeneous condition. However, the rate of dithol complex is even 1.6 times faster than that of the diamine type. The reactivity of zeolite for DFP hydrolysis is also evaluated. NaY type does not promote the hydrolysis, but RuNaY shows relatively lower reactivity than those of Cu(II)-organic ligands complexes.

키워드

과제정보

연구 과제 주관 기관 : 화랑대연구소

참고문헌

  1. R. A. Moss, K. W. Alwis, and G. O. Bizzigotti, J. Am. Chem. Soc., 105, 681 (1983) https://doi.org/10.1021/ja00341a092
  2. R. A. Moss, S. Chatterjee, and B. Wilk, J. Org. Chem., 51, 4303 (1986) https://doi.org/10.1021/jo00372a042
  3. R. A. Moss, K. W Alwis, and J. S. Shin, J. Am. Chem. Soc., 106, 2651(1984) https://doi.org/10.1021/ja00321a027
  4. J. E. Coleman and P. Gettins, Adv. Enzymol., 55, 381 (1983)
  5. P. Hendry and A. M. Sargeson, Aust. J. Chem., 39, 1177 (1986) https://doi.org/10.1071/CH9861177
  6. P. Hendry and A. M. Sargeson, Inorg. Chem., 29, 92 (1990) https://doi.org/10.1021/ic00326a020
  7. R. K. Osterheld, Topics in phosphorus chemistry, vol. 7, John- Wiley & Sons, New York, pp.234~237 (1964)
  8. A. E. Martell, S. Chaberek, Jr., R. C. Courtney, S. Westerback, and H. Hyytiainen, J. Am. Chem. Soc., 79, 3036 (1957) https://doi.org/10.1021/ja01569a014
  9. J. Epstein and D. Hrosenblatt, J. Am. Chem. Soc., 80, 3596 (1958) https://doi.org/10.1021/ja01547a027
  10. F. M. Menger, L. H. Gan, E. Johnson, and D. H. Durst, J. Am. Chem. Soc., 109, 2800 (1987) https://doi.org/10.1021/ja00243a038
  11. J. R. Morrow and W. C. Trogler, Inorg. Chem., 27, 3387 (1988) https://doi.org/10.1021/ic00292a025
  12. I. W. Yang and W. Y. Chung, J. Ind. Eng. Chem., 6, 242 (2000)
  13. G. W. Wagner and P. W. Bartram, Langmuir, 15, 8113 (1999) https://doi.org/10.1021/la990716b
  14. G. W. Wagner, L. R. Procell, R. J. O’Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, J. Am. Chem. Soc., 123, 1636 (2001) https://doi.org/10.1021/ja003518b
  15. G. W. Wagner, L. R. Procell, and S. Munavalli, J. Phys. Chem. C, 111, 17564 (2007) https://doi.org/10.1021/jp074511k
  16. G. W. Wagner, Q. Chen, and Y. Wu, J. Phys. Chem. C, 112, 11901 (2008) https://doi.org/10.1021/jp803003k
  17. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience, New York, 1972, p. 1011
  18. M. V. Twigg, Mechanisms of inorganic and organometallic reactions, Pelum Press, New York, pp. 228∼234 (1984)
  19. I. W. Yang, W. Y. Chung, and K. B. Choo, J. Kor. Mil. Academy, 53, 703 (1997)
  20. R. C. Courtney, R. L. Gustafson, S. J. Westerback, H. Hyytianinen, S. C. Chaberek, Jr., and A. E. Martell, J. Am. Chem. Soc., 79, 3030 (1957) https://doi.org/10.1021/ja01569a013