Adsorption of Metal Ions on Synthetic Resin with Styrene Hazardous Materials in Water Fire Extinguishing Agent

물 소화약제에서 스타이렌 위험물을 포함한 합성수지에 의한 금속 이온들의 흡착

  • Lee, Chi-Young (Department of Clinical Pathology, Gwangju Health College) ;
  • Kim, Joon-Tae (Department of Chemistry, Chosun University)
  • Received : 2009.07.21
  • Accepted : 2010.10.06
  • Published : 2010.04.10

Abstract

Cryptand resins have been synthesized from 1-aza-18-crown-6 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) divinylbenzene copolymer with crosslinkage of 1%, 2%, 10%, and 18% by substitution reaction. The synthesis of these resins was confirmed by the content of chlorine, element analysis, surface area (BET), and IR-spectroscopy. The effects of pH, time and crosslinkage on adsorption of metal ion from water fire extinguishing agentby synthetic resin adsorbent were investigated. Metal ions showed a great adsorption over pH 3 and adsorption equilibriumof metal ions was about two hours. The adsorption selectivity determined in water was in the increasing order of sodium ($Na^{1+}$) > zinc ($Zn^{2+}$) > chromium ($Cr^{3+}$) ion. The adsorption was in the order of 1%, 2%, 10%, and 18% crosslinkage resin.

1%, 2%, 10% 및 18%의 가교도를 가진 스타이렌(제4류 위험물 중 제2석유류) 디비닐벤젠 공중합체에 1-aza-18-crown-6 거대 고리 리간드를 치환반응으로 결합시켜 수지들을 합성하였으며, 이들 수지의 합성은 염소 함량과 원소 분석, 비표면적(BET), 그리고 IR-분광법으로 확인하였다. 물 소화약제로부터 합성수지 흡착제에 대한 금속 이온의 흡착에 미치는 pH, 시간 그리고 수지의 가교도에 따른 영향들을 조사한 결과 금속 이온들은 pH 3 이상에서 큰 흡착율을 보였으며, 금속 이온들의 흡착 평형은 2 h 정도였고, 수용액에서 수지에 대한 흡착 선택성은 나트륨($Na^{1+}$) > 아연($Zn^{2+}$) > 크롬($Cr^{3+}$) 이온의 순서이며, 금속 이온의 흡착력은 1%, 2%, 10% 및 18%의 가교도 순이었다.

Keywords

Acknowledgement

Supported by : 광주보건대학

References

  1. K. W. Choi, Y. S. Ahn, K. T. Shim, H. Huh, and J. S. Ahn, Bull. Kor. Chem. Soc., 23, 688 (2002) https://doi.org/10.5012/bkcs.2002.23.5.688
  2. H. K. Frensdorff, J. Am. Chem. Soc., 93, 4684 (1971) https://doi.org/10.1021/ja00748a006
  3. L. F. Lindoy, P. G. Grimslery, H. C. Lip, R. J. Smith, and J. T. Baker, Aus. J. Chem., 30, 2095 (1997)
  4. L. F. Lindoy, K. R. Adam, D. S. Bladwine, A. Bashall, M. McPartlin, and H. R. Powell, Chem. Soc., Dalton Translation, 237 (1994)
  5. M. A. Ahearn, J. Kim, A. J. Leong, L. F. Lindoy, G. V. Meehan, and O. A. Mattews, Chem. Soc., Dalton Translation, 3591 (1996)
  6. S. J. Park, B. R. Jun, and J. Kawasaki, J. Korean Ind. Eng. Chem., 15, 11 (2004)
  7. H. D. Jeong, D. S. Kim, and K. I. Kim, J. Korean Ind. Eng. Chem., 16, 123 (2005)
  8. M. Y. Suh, S. C. Sohn, C. H. Lee, K. S. Choi, D. Y. Kim, Y. J. Park, K. K. Park, K. Y. Jee, and W. H. Kim, J. Kor. Chem. Soc., 44, 526 (2000)
  9. G. Bombieri and G. Depaoli, Inorg. Chem., 18, 123 (1976)
  10. T. Hayashita, J. H. Lee, S. Chem, and R. A. Bartsch, Anal. Chem., 63, 1844 (1991) https://doi.org/10.1021/ac00017a032
  11. E. Blasius and K. P. Janzen, Pure & Appl. Chem., 54, 2115 (1982) https://doi.org/10.1351/pac198254112115
  12. H. Egawa, T. Nonaka, and M. Ikari, Appl. Poly. Sci., 29, 2045 (1984) https://doi.org/10.1002/app.1984.070290613
  13. S. K. Park and J. T. Kim, J. Korean Ind. Eng. Chem., 13, 765 (2002)
  14. G. W. Roh, K. C. Kim, S. H. Kim, and J. T. Kim, J. Korean Ind. Eng. Chem., 20, 21 (2009)
  15. C. W. Park, Industry an Engineer of Hazardous Materials, Nam Yang Mun Hwa, Publication Co, 3-92, (2007)
  16. S. M. Howdle, K. Jerabek, V. Leocorbo, P. C. Marr, and D. C. Sherrington, Polymer, 41, 7272 (2000)
  17. Robert C. Weast, Handbook of chemistry and physics, 87th, D52-D93, (2003)
  18. C. J. Pederson, J. Am. Chem. Soc., 92, 386 (1970) https://doi.org/10.1021/ja00705a605