References
- Berndt, D. J. and Clifford, J. (1994), Using dynamic time warping to find patterns in time series, Association for the Advancement of Artificial Intelligence Technical Report, WS-94-03, 359-370.
- Cheng, Y. and Church, G. (2000), Biclustering of expression data, Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 93-103.
- Cho, R., Campbell, M., Winzeler, E, Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., and Davis, R. (1998), A genome-wide transcriptional analysis of the mitotic cell cycle, Molecular Cell, 2, 65-73. https://doi.org/10.1016/S1097-2765(00)80114-8
- Ernst, J., Nau, G. J., and Bar-Joseph, Z. (2005), Clustering short time series gene expression data, Bioinformatics, 21, i159-i16. https://doi.org/10.1093/bioinformatics/bti1022
- Getz, G., Levine, E., and Domany, E. (2000), Coupled two-way clustering analysis of gene microarray data, The Proceedings of the National Academy of Sciences of the Unite States of America, 12079-12084.
- Hartigan, J. (1972), Direct clustering of a data matrix, Journal of the American Statistical Association, 37, 123-129.
- Kluger, Y., Basri, R., Ghang, J., and Gerstein, M. (2003), Spectral biclustering of microarray data: Coclustering genes and conditions. Genome Research, 13, 703-716. https://doi.org/10.1101/gr.648603
- Kohonen, T. (1990) The self organizing maps, Proceeding IEEE, 78, 1464-1480.
- Lazzeroni, L. and Owen, A. (2002), Plaid models for gene expression data, Statistica Sinica, 12, 61-86.
- Lee, Y., Lee, J., and Jun, C.-H. (2009), Validation measures of bicluster solutions, Industrial Engineering and Management Systems, 8, 101-108.
- Liao, T. W. (2005), Clustering of time series data-a survey, Pattern Recognition, 38, 1857-1874. https://doi.org/10.1016/j.patcog.2005.01.025
- Liu, J. and Wang, W. (2003), OP-Cluster: clustering by tendency in high dimensional space, Proceeding, Third IEEE International Conference, Data Mining, 187-194.
- Madeira, S. and Oliveira, A. (2004), Biclustering Algorithms for Biological Data Analysis: A Survey, IEEE Transactions on Computational Biology and Bioinformatics, 1, 24-45. https://doi.org/10.1109/TCBB.2004.2
- Madeira, S. and Oliveira, A. (2005), A linear time biclustering algorithm for time series gene expression data, Lecture Notes in Computer Science, Springer Berlin, 39-52.
- Mirkin, B. (1996), Mathematical classification and clustering, Kluwer Academic Publish.
- Santamaria, R., Quintales, R. and Theoron, R. (2007), Method to bicluster validation and comparison in microarray data, Intelligent Data Engineering and Automated Learning-Ideal 2007: 8th International Conference, Birmingham, Uk, Proceedings, 780-789,
- Turner, H., Bailey, T., and Krzanowski, W. (2005), Improved biclustering of microarray data demonstrated through systematic performance tests, Computational Statistics and Data Analysis, 48, 235-254. https://doi.org/10.1016/j.csda.2004.02.003
- Yeung, K. Y., Haynor, D. R., and Ruzzo, W. L. (2000), Validating clustering for gene expression Data, Technical Report, Department of Computer Science and Engineering, University of Washington.
- Zhang, Y., Zha, H., and Chu, C. (2005), A Time-series biclustering algorithm for revealing co-regulated genes. Proceedings of the International Conference on Information Technology, Coding and Computing, 1, 32-37.
Cited by
- Biclustering of Smart Building Electric Energy Consumption Data vol.9, pp.2, 2019, https://doi.org/10.3390/app9020222
- 수사단서를 이용한 동일 사이버범죄 판단기법 vol.25, pp.4, 2010, https://doi.org/10.13089/jkiisc.2015.25.4.767
- Sustainable Visual Analysis for Bank Non-Performing Loans and Government Debt Distress vol.12, pp.1, 2010, https://doi.org/10.3390/su12010131