References
- Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993), Nonlinear Programming: Theory and Algorithms, (3rd Ed.) A John Wiley and Sons, Inc., New York.
- Draper, N. R. (1963), 'Ridge Analysis' of response surfaces, Technometrics, 5(4), 469-479. https://doi.org/10.2307/1266023
- Del Castillo, E., Fan, S. K., and Semple, J. (1997), The computation of global optima in dual response systems, Journal of Quality Technology, 29, 347-353.
- Del Castillo, E., Fan, S-K., and Semple, J. (1999), Optimization of dual response system: a comprehensive procedure for degenerate and nondegenerate problems, European Journal of Operational Research, 112, 174-186. https://doi.org/10.1016/S0377-2217(97)00382-2
- Fan, S-K. (1996), Optimization of dual and multiple response processes, Ph.D. Dissertation, Department of Industrial Engineering University of Texas at Arlington, Arlington, TX.
- Fan, S. K. (2000), A generalized global optimization algorithm for dual response systems, Journal of Quality Technology, 32(4), 444-456.
- Fan, S. K. (2003), A different view of ridge analysis from numerical optimization, Engineering Optimization, 35(6), 627-647. https://doi.org/10.1080/03052150310001614846
- Gay, G. M. (1981), Computing optimal locally constrained step, SIAM J. Sci. Stat. Comput., 2(2), 186-197. https://doi.org/10.1137/0902016
- Hooke, R. and Jeeves, T. A. (1961), Direct Search Solution of Numerical and Statistical Problems, Journal of the Association Computer Machinery, 8, 212-229. https://doi.org/10.1145/321062.321069
- Lasdon, L. S., Fox, R. L., and Ratner, M. (1974), Nonlinear Optimization using the Generalized Reduced Gradient Method, Reveu Francaise d'Automatique et Recherche Operationnelle, 23, 73-104.
- Lasdon, L. S., Waren, A. D., Jain, A., and Ratner, M. (1978), Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming, ACM Transactions on Mathematical Software, 4(1), 34-50. https://doi.org/10.1145/355769.355773
- Luenberger, D. G. (1989), Linear and Nonlinear Programming, (2nd Ed.) Kluwer Academic Publishers, USA.
- Myers, R. H. and Carter, W. H. JR (1973), Response surface techniques for dual response systems, Technometrics, 15, 301-317. https://doi.org/10.2307/1266990
- More, J. J., and Sorensen, D. C. (1983), Computing a trust region step, SIAM J. Sci. Stat. Comput., 4(3), 553-572. https://doi.org/10.1137/0904038
- Powell, M. J. D. (1998), Direct search algorithms for optimization calculations, Acta Numerica, 7, 287-336. https://doi.org/10.1017/S0962492900002841
- Sorensen, D. C. (1982), Newton's Method with a model trust region modification, SIAM J. Numer. Anal., 19(2), 409-426. https://doi.org/10.1137/0719026
- Semple, J. (1997), Optimality conditions and solution procedures for nondegenerate dual response systems, IIE Transactions, 29(9), 743-752.
- Shah, H. K., Montgomery, D. C., and Carlyle W. M. (2004), Response surface modeling and optimization in multiresponse experiments using seemingly unrelated regressions. Quality Engineering, 16(3), 387-397 https://doi.org/10.1081/QEN-120027941
- Vining, G. G. and Myers, R. H. (1990), Combining Taguchi and response surface philosophies: A dual response approach, Journal of Quality Technology, 22, 38-45.
Cited by
- A trust region-based approach to optimize triple response systems vol.46, pp.5, 2010, https://doi.org/10.1080/0305215x.2013.791814