References
- Future Eco, "Generate Power in the Wastewater", Future Eco Magazine, 3, 100 (2010), (http://www.ecofuture.co.kr).
- B. E. Logan, "Microbial Fuel Cells", John Willy & Sons (2008).
- A. ter Heijne, H. V. M. Hamelers, V. de Wilde, R. R. Rozendal, and C. J. N. Buisman, "A Bipolar Membrane Combined with Ferric Iron Reduction as an Efficient Cathode System in Microbial Fuel Cells", Environ. Sci. Technol., 40(17), 5200 (2006). https://doi.org/10.1021/es0608545
- A. Shantaram, H. Beyenal, R. Raajan, A. Veluchamy, and Z. Lewandowski, "Wireless sen-sors powered by microbial fuel cells", Environ. Sci. Technol., 39(13), 5037 (2005). https://doi.org/10.1021/es0480668
- M. T. Madigan and J. M. Martinko, "Brock Biology of Microorganisms", Person Education Inc., Upper Saddle River, NJ. (2006).
- O. Schaetzle, F. Barriere, and K. Baronian, "Bac-teria and yeasts as catalysts in microbial fuel cells : electron transfer from micro-organisms to electro-des for green electricity", Energy Environ. Sci., 1, 607 (2008). https://doi.org/10.1039/b810642h
- S. K. Lower, M. F. Hochella, and T. J. Beveridge, "Bacterial recognition of mineral surfaces : nano-scale interactions between Shewanella and alpha-FeOOH", Science, 292(5520), 1360 (2001). https://doi.org/10.1126/science.1059567
- Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pin-chuk, K. Watanabe, S. Ishii, B. E. Logan, K. A. Nealson, and J. K. Fredrickson, "Electrically con-ductive bacterial nanowires produced by Shewanel-la oneidensis strain MR-1 and other micro-organisms", PNAS, 103(30), 11358 (2006).
- G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, "Extracellular electrontransfer via microbial nano-wires", Nature, 435(7045), 1098 (2005). https://doi.org/10.1038/nature03661
- H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim, "A mediator-less micro-bial fuel cell using a metalreducing bacterium, Shewanella putrefaciens", Enzyme Microb. Technol., 30(2), 145(2002). https://doi.org/10.1016/S0141-0229(01)00478-1
- A. Rinaldi, B. Mecheri, V. Garavaglia, S. Licoccia, P. D. Nardo, and E. Traversa, "Engineering materi-als and biology to boost performance of microbial fuel cells : a critical review", Energy Environ. Sci., 1, 417 (2008). https://doi.org/10.1039/b806498a
- F. Zhao, R. C. T. Slade, and J. R. Varcoe, "Tech-niques for the study and development of microbial fuel cells : an electrochemial perspective", Chem. Soc. Rev., 38, 1926 (2009). https://doi.org/10.1039/b819866g
- B. E. Logan and J. M. Regan, "Electricity-produc-ing bacterial communities in microbial fuel cells", Trends Microbiol., 14(12), 512 (2006). https://doi.org/10.1016/j.tim.2006.10.003
- D. R. Bond and D. R. Lovley, "Electricity pro-duction by Geobacter sulfurreducens attached to electrodes", Appl. Environ. Microbiol., 69(3), 1548 (2003). https://doi.org/10.1128/AEM.69.3.1548-1555.2003
- D. H. Park, M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus, "Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production", Appl. Environ. Microbiol., 65(7), 2912 (1999).
- D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, "Electrode-reducing microorganisms that harvest energy from marine sediments", Science, 295(5554), 483 (2002). https://doi.org/10.1126/science.1066771
- B. E. Logan, "Extracting hydrogen and electricity from renewable resources", Environ. Sci. Technol., 38(9), 160A (2004). https://doi.org/10.1021/es040468s
- K. Rabaey and W. Verstraete, "Microbial fuel cells : novel biotechnology for energy generation", Trends Biotechnol., 23(6), 291 (2005). https://doi.org/10.1016/j.tibtech.2005.04.008
- K. Rabaey, N. Boon, M. Hofte, and M. Verstraete, "Microbial phenazine production enhances electron transfer in biofuel cells", Environ. Sci. Technol., 39(9), 3401 (2005). https://doi.org/10.1021/es048563o
- http://www.ogc.co.jp/e/products/carbon-f/donacarbo_ paper.html.
- http://en.thrive-metal.com/products_detail/&productId=02ec3b0b-af85-4740-aa01-1bfdc5c72481&comp_stats=comp-FrontProducts_list01-004.html.
- http://www.millrose.com/carbon_fiber.htm.
- S. K. Chaudhuri and D. R. Lovley, "Electricity ge-neration by direct oxidation of glucose in media-torless microbial fuel cells", Nat. Biotechnol., 21(10), 1229 (2003). https://doi.org/10.1038/nbt867
- B. E. Logan, S. Cheng, V. Watson, and G. Estadt, "Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells", Environ. Sci. Technol., 41(9), 3341 (2007). https://doi.org/10.1021/es062644y
- D. H. Park and J. G. Zeikus, "Impact of electrode composition on electricity generation in a singlecompartment fuel cell using Shewanella putrefacians", Appl. Microbiol. Biotechnol., 59, 58 (2002). https://doi.org/10.1007/s00253-002-0972-1
- S. Cheng, H. Liu, and B. E. Logan, "Increased performance of single-chamber microbial fuel cells using an improved cathode structure", Electrochem. Commun., 8(3), 489 (2006). https://doi.org/10.1016/j.elecom.2006.01.010
- S. Cheng, H. Liu, and B. E. Logan, "Power den-sities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells", Environ. Sci. Technol., 40(1), 364 (2006). https://doi.org/10.1021/es0512071
- K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, "Biofuel cells select for micro-bial consortia that self-mediate electrontransfer", Appl. Environ. Microbiol., 70(9), 5373 (2004). https://doi.org/10.1128/AEM.70.9.5373-5382.2004
- H. Liu and B. E. Logan, "Electricity generation us-ing an air-cathode single chamber microbial fuel cell in the presence and absence of a proton ex-change membrane", Environ. Sci. Technol., 38(14), 4040 (2004). https://doi.org/10.1021/es0499344
- J. R. Kim, S. Cheng, S. E. Oh, and B. E. Logan, "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells", Environ. Sci. Technol., 41(3), 1004 (2007). https://doi.org/10.1021/es062202m
- B. E. Logan, C. Murano, K. Scott, N. D. Gray, and I. M. Head, "Electricity generation from cysteine in a microbial fuel cell", Water Res., 39(5), 942 (2005). https://doi.org/10.1016/j.watres.2004.11.019
- B. E. Logan and J. M. Regan, "Microbial fuel cells-challenges and applications", Environ. Sci. Technol., 40(17), 5172 (2006). https://doi.org/10.1021/es0627592
- B. E. Logan, "Materials and configurations for scal-able microbial fuel cells", Provisional patent appli-cation, PST20918, PSU2006-3173, Penn Statte University (2005).
- Z. He, N. Wagner, S. D. Minteer, and L. T. Angenent, "The Upflow Microbial Fuel Cell with an Interior Cathode : Assessment of the Internal Resistance by Impedance Spectroscopy", Environ. Sci. Technol., 40(17), 5212 (2006). https://doi.org/10.1021/es060394f
- P. Aelterman, K. Rabaey, T. H. Pham N. Boon, and W. Verstraete, "Continuous electricity gen-eration at high voltages and currents using stacked microbial fuel cells", Environ. Sci. Technol., 40(10), 3388 (2006). https://doi.org/10.1021/es0525511
- S. E. Oh and B. E. Logan, "Voltage reversal dur-ing microbial fuel cell stack operation", J. Power. Sour., 167(1), 11 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.016