Effect of $\beta$-glucan Extracted from Youngji Mushroom on the Growth Performance of Weaning Pigs

영지버섯에서 추출한 $\beta$-glucan 이 자돈의 생산능력에 미치는 영향

  • 김종덕 (천안연암대학 축산계열) ;
  • 심금섭 (천안연암대학 축산계열) ;
  • 최낙진 (전북대학교 동물자원과학부) ;
  • 김지훈 (카길애그리퓨리나) ;
  • 김용현 (순천향대학교 자연과학대학 생명과학과) ;
  • 권현정 (순천향대학교 자연과학대학 생명과학과) ;
  • 김선기 (선바이오) ;
  • 한만덕 (순천향대학교 자연과학대학 생명과학과)
  • Received : 2010.01.18
  • Accepted : 2010.04.28
  • Published : 2010.09.30

Abstract

This experiment was selected a $\beta$-glucan producing mushroom strain and developed industrial media, and used to $\beta$-glucan as an alternative for antibiotics in weaned pigs. Yields of mycelial biomass and extracellular $\beta$-glucan from Youngji (Ganoderma lucidum) mushroom was 8.52g/L and 4.49g/L respectively. Also, we prepared optimum formula for mushroom cultivations. A total of 144 pigs ($8.6{\pm}0.9$ kg average body weight, weaned $20{\pm}3$ days of age) were allotted to 4 different treatment groups and replicated 4 times with 8 pigs per replicate in randomized complete block design. Treatments were T1) NC (negative control, basal diet), T2) PC (positive control, basal diet+0.255% antibiotics), T3) NC+0.2% $\beta$-glucan and T4) PC+0.2% $\beta$-glucan. The T2 and T4 treatments were significantly higher in feed efficiency by antibiotics group (p<0.05), however, there was no significant differences in terms of average daily gain (ADG) and average daily feed intake (ADFI) during phase I (0~14 days). In phase II (15~28 days), Pigs fed with antibiotics and $\beta$-glucan (T4) had greater ADG than other treatments (p<0.05), while no differences were observed in ADFI and feed efficiency. During the whole experiment period, the ADG of T4 treatment was higher than other treatments. Pigs fed with $\beta$-glucan (T3 and T4) had greater diarrhea score and moisture content than other treatments (p<0.05). Pigs fed with $\beta$-glucan (T3 and T4) had greater moisture content than other treatments (p<0.05). However, there was no significant differences in diarrhea score and mortality of weaned pigs. There was marginal reductions in feed cost measured feed cost per weight gain used in antibiotics and $\beta$-glucan added diet during phase I. In the second phase, the treatment supplemented with antibiotics had a significantly lower feed cost per weight gain compared to the other treatments. The results from these experiments suggests that $\beta$-glucan is likely able to improve the growth performance, and reduce feed cost although they do not have similar effects like antibiotics in weaning pigs.

영지버섯에서 추출한 균사체 함량은 배지 L당 8.52g, 균체외 다당류는 4.49g으로 $\beta$-glucan 생산능력이 우수한 영지버섯을 선발하였으며, 대두분과 수용성전분 등을 이용한 최적의 산업용 버섯배양배지를 개발하였다. 원심분리와 냉동건조방법으로 제조한 $\beta$-glucan을 자돈사료에 첨가하여 이유자돈의 성장능력, 설사, 폐사율 및 경제성을 비교하여 항생제대체효과를 구명하기 위하여 실시하였다. 삼원교잡종(Landrace${\times}$Large White${\times}$Duroc) 이유자돈(8.6kg) 144두를 선발하여 28일간 사양시험을 실시하였다. 본 시험은 4처리 4반복의 난괴법 배치로 T1 처리구(-control)는 무항생제, T2 처리구(+control)는 항생제, T4 처리구는 무항생제에 $\beta$-glucan 0.2% 첨가, T3 처리구는 항생제와 $\beta$-glucan 0.2% 첨가하였다. 이유전기 (phase I, 0~14일)에서는 일당증체량과 사료섭취량은 처리간에 유의적인 차이가 없었으나 사료효율은 처리간에 차이가 있었다(p<0.05). 한편 이유후기(phase II, 15~28일)와 전 기간(0~28일)에서는 사료섭취량과 사료효율은 처리간에 유의적인 차이가 없었으나 일당증체량은 처리간에 유의적인 차이가 있었다(p<0.05). 전 기간의 일당증체량의 비교에서 설사지수와 분변의 수분함량은 T3와 T4 처리구가 다른 처리구보다 높았다(p<0.05). 이유자돈 분변의 수분함량은 T3와 T4 처리구가 다른 처리구보다 높았으나(p<0.05), 설사지수와 폐사율은 처리간에 유의적인 차이가 없었다. 이유자돈 시험의 경제성분석 결과 이유전기에서는 항생제와 $\beta$-glucan을 첨가함에 따라 사료비가 증가하였으나, 섭취량과 증체량을 고려한 사료비에서는 $\beta$-glucan을 첨가한 처리구(T3 및 T4)가 첨가하지 않은 처리구(T1 및 T2)보다 감소하여 $\beta$-glucan의 효과가 있었다. 그러나 이유후기의 $\beta$-glucan의 효과가 이유전기의 효과가 적 었다. 이상의 이유자돈시험을 결과를 종합해 보면 기능성 $\beta$-glucan은 이유자돈의 증체량, 영양소 소화율 및 경제성에 효과가 있었으며, 특히 항생제 대체제로서 일정 부분 개선 효과가 있는 것으로 사료된다.

Keywords

References

  1. 배극환,고태구.김지훈.조원탁.한영근.한인규. 1999. 항생제 대체 기능성 물질의 사용 효과에 관한 연구. 한국축산학회지 41(1): 23-30.
  2. 장영달.오희경.박용국.최현봉.윤진현.김유용. 2009. 항생제 대체제로서 생균제가 이유자돈의 성장능력 및 영양소 이용률, 설시빈도, 면역반응에 미치는 영향. 한국동물자원과학회지 51(1) 25-32.
  3. 조병임.유선종.김은집.안병기.백현동.윤철원.장효일.김승육.강창원. 2008. 효모변이균주 유래 $\beta$-글루칸과 복합균종 생균제의 혼합급여가 육계의 생산성 및 장내 균총에 미치는 영향. 한국동물자원과학회지 50(1): 89-98.
  4. 주지환.YuXin Yang.최재용.최순천.조원탁.채병조. 2009. 다양한 유기산제들의 급여가 이유자돈의 성장과 영양소 소화율에 미치는 효과. 한국동물자원과학회지 51(1): 15-24.
  5. 한인규. 2000. 양돈영양과 사료. 서울대학교.
  6. Abuel, S. J., J. D. Kim, S. N. Kang, J. W. Youn, and M. S. Kim. 2006. A study on two types of feed additive as an alternative for antibiotics in swine feeds. Ⅻth AAAP animal Science Congress Proceedings. p. 175.
  7. Ahn, Y. T., K. L. Lim, J. C. Ryu, D. K. Kang, J. S. Ham, Y. H. Jang and H. U. Kim. 2002. Characterization of Lactobacillus acidophilus isolated from piglets and Chicken. Asian-Aust. J. Ani. Sci. 15(12): 1790-1797. https://doi.org/10.5713/ajas.2002.1790
  8. AOAC. 1990. Official Method of Analysis (15th ed.). Association of Official Analytical Chemists. Washington, DC.
  9. Chae, B. J., J. D. lahakare, W. K. Moon, S. L. Lee, Y. H. Park, and T. W. Hahn. 2006. Effects of supplementation of $\beta$-glucan on the growth performance and immunity in broilers. Res. Vet. Sci. 80: 291. https://doi.org/10.1016/j.rvsc.2005.07.008
  10. Dritz, S. S., J. Shi, T. L. Keilian, R. D. Goodband, J. L. Nelssen, M. D. Tokach, M. M. Cheongappa, J. E. Smith, and F. Blecha. 1995. Influence of dietary $\beta$-glucan of growth performance nonspecific immunity and resistance to Streptococcus suis infection in weanling pigs. J. Anim. Sci. 73: 3341. https://doi.org/10.2527/1995.73113341x
  11. Eicher, S. D., C. A. McKee, J. A. Carroll, and E. A. Pajor, 2006. Supplemental vitamin c and yeast cell wall beta-glucan as growth enhancers in newborn pigs and as immunomdulators after and endotoxin challenge after weaning. J. Anim. Sci. 84: 2352. https://doi.org/10.2527/jas.2005-770
  12. Ha, C. H., C. W. Yun, H. D. Paik, S. W. Kim, C. W. Kang, H. J. Hwang, and H. T. Chang. 2006. Preparation and analysis of yeast cell wall mannoproteins, immune enhancing materials, from cell wall mutant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 237.
  13. Jung K., Y. Ha, S. K. Ha, D. U. Han, D. W. Kim, W. K. Moon, and C. Chae. 2004. Antiviral Effect of Saccharomyces cerevisiae b-glucan to swine influenza virus by increased production of interferon-$\gamma$ and nitric oxide. J. Vet. Med. 51: 72-76. https://doi.org/10.1111/j.1439-0450.2004.00732.x
  14. Kim, Y. Y., K. Y. Kil, H. Y. Oh, In K. Han. 2005. Acidifier as an alternative material to antibiotics in animal feed. Asian-Aust. J. Anim. Sci. 18(7): 1048. https://doi.org/10.5713/ajas.2005.1048
  15. Klasing, K. C., D. E. Laurin, R. K. Peng, and D. M. Fry. 1987. Immunologically mediated growth depress in chicks: influence of feed intake, corticosterone and interleukin-1. J. Nutri. 117: 1629. https://doi.org/10.1093/jn/117.9.1629
  16. Lowry, K. R., Q. A. Izquierdo, and D. H. Baker. 1987. Efficiency of BETAFIN relative to choline as a dietary methyl donor. Presentation at the Poultry Science Association Annual Meeting-August 10-14, 1987, p. 8.
  17. Mantovani M. S., M. F. Bellini, J. P. Angeli, R. J. Pliverira, A. F. Silva, and L. R. Ribeiro. 2007. $\beta$-glucans in promoting health : Prevention against mutation and cancer. Mutant. Res. 658: 154-161.
  18. Poutsiaka, D. D., M. Mengozzi, B. Sinha, and C. A. Dinarello. 1993. Cross-linkage of the $\beta$-glucan receptor on human monocytes results in interleukin-1 receptor antagonist but not interleukin-1 production. Blood. 82: 3695.
  19. Queenan K. M., M. L. Stewart, K. N. Smith, W. Thomas, R. G. Fulcher, and J. L. Slavin. 2007. Concentrated oat $\beta$-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutr. J. 6: 1-8. https://doi.org/10.1186/1475-2891-6-1
  20. SAS Institute, Inc. 1999. SAS user's guide: Statistics. SAS Inst., Inc., Cary, NC.
  21. Schoenherr, W. D., D. S. Pollmann, and J. A. Coalson. 1994. Titration of $MacroGrnd^{TM}$-S on growth performance of nursery pigs. J. Anim. Sci. 72(Suppl. 2): 57(Abstr.).
  22. Suzuki M., F. Takatsuki, Y. Maeda, J. Hamuro, and G. Chihara. 1994. Antitumor and immunological activity of lentinan in compairson with LPS. Int. J. Immunopharmacol. 16: 463-468. https://doi.org/10.1016/0192-0561(94)90037-X
  23. Suzuki, I., H. Tanaka, A. Kinoshita, S. Oikawa, M. Osawa, and T. Yadomae. 1990. Effect of orally administered $\beta$-glucan on macrophage function in mice. Int. J. Immunopharmacol. 12: 675. https://doi.org/10.1016/0192-0561(90)90105-V
  24. Wenk, C. 2002. Herbs and botanicals as feed additives in monogastric animals. Proc. 2002. Int. Symp. On Recent Advances in animal Nutr., New Delhi, India, 22nd Sept. 2002. pp. 14-21.
  25. Wenk. C. 2000. Recent advances in animal feed additives such as metabolic modifiers, antimicrobial agents enzymes and highly available minerals. Asian-Aust. J. Anim. Sci. 13(1): 86. https://doi.org/10.5713/ajas.2000.86
  26. Williams, P. E. V., L. Pagliani, G. M. Innes, K. Pennie, C. I. Harris, and P. Garthwaite. 1987. Effect of a $\beta$-agonist (clenbuterol) on growth, carcass composition, protein and energy metabolism of veal calves. Br. J. Nutr. 57: 417. https://doi.org/10.1079/BJN19870049
  27. Xiao Z., Trincado, C. A. and Murtaugh, M. P. 2004. $\beta$-glucan enhancement of T cell IFN-$\gamma$ response in swine. Vet. Immunol. Immunopathol. 102: 315-320. https://doi.org/10.1016/j.vetimm.2004.09.013