DOI QR코드

DOI QR Code

An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification

  • Received : 2010.12.16
  • Accepted : 2010.12.29
  • Published : 2010.12.30

Abstract

An amperometric ascorbic acid selective sensor utilizing the transfer reaction of proton liberated from the dissociation of ascorbic acid in aqueous solution across an elliptic micro-hole water/organic gel interface is demonstrated. This redox inactive sensing platform offers an alternative way for the detection of ascorbic acid to avoid a fouling effect which is one of the major concerns in redox based sensing systems. The detection principle is simply measuring the current change with respect to the assisted transfer of protons by a proton selective ionophore (e.g., ETH 1778) across the micro-hole interface between the water and the polyvinylchloride-2-nitrophenyloctylether gel phase. The assisted transfer reaction of protons generated from ascorbic acid across the polarized micro-hole interface was first characterized using cyclic voltammetry. An improved sensitivity for the quantitative analysis of ascorbic acid was achieved using differential pulse stripping voltammetry with a linear response ranging from 1 to $100\;{\mu}M$ concentrations of ascorbic acid. As a demonstration, the developed sensor was applied for analyzing the content of vitamin-C in different types of commercial pharmaceutical tablets and syrups, and a satisfactory recovery from these samples were also obtained.

Keywords

References

  1. G.L. Wheeler, M.A. Jones and N. Smirnoff, Nature, 393, 365 (1998). https://doi.org/10.1038/30728
  2. C.S. Tsao, in Vitamin C in Health and Disease, L. Packer and J. Fuchs, Eds., Marcel Dekker Inc., New York (1997).
  3. C.H. Snyder, The Extraordinary Chemistry of Ordinary Things, Wiley, New York (1995).
  4. S.J. Padayatty, A. Katz, Y. Wang, P. Eck, O. Kwon, J.-H. Lee, S. Chen, C. Corpe, A. Dutta, S.K. Dutta and M. Levine, J. Am. Coll. Nutr., 22, 18 (2003). https://doi.org/10.1080/07315724.2003.10719272
  5. T. Yokoyama, C. Date, Y. Kokubo, N. Yoshiike, Y. Matsumura and H. Tanaka, Stroke, 31, 2287 (2000). https://doi.org/10.1161/01.STR.31.10.2287
  6. R. Jariwalla and S. Harakeh, in Vitamin C in Health and Disease, L. Packer and J. Fuchs, Eds., Macel Dekker, Inc., New York (1997).
  7. E. Raveh, T. Saban, H. Zipi and E. Beit-Yannai, J. Sci. Food Agric., 89, 1825 (2009). https://doi.org/10.1002/jsfa.3639
  8. A.-M. Yu and H.-Y. Chen, Anal. Chim. Acta, 344, 181 (1997). https://doi.org/10.1016/S0003-2670(97)00016-0
  9. P.O. Barrales, M.L.F. de Cordova and A.M. Diaz, Anal. Chim. Acta, 360, 143 (1998). https://doi.org/10.1016/S0003-2670(97)00688-0
  10. N. Lenghor, J. Jakmunee, M. Vilen, R. Sara, G.D. Christian and K. Grudpan, Talanta, 58, 1139 (2002). https://doi.org/10.1016/S0039-9140(02)00444-7
  11. Y. Dilgin and G. Nisli, Chem. Pharm. Bull., 53, 1251 (2005). https://doi.org/10.1248/cpb.53.1251
  12. M.L. Antonelli, G.D'Ascenzo, A. Lagana and P. Pusceddu, Talanta, 58, 961 (2002). https://doi.org/10.1016/S0039-9140(02)00449-6
  13. E. Kishida, Y. Nishimoto and S. Kojo, Anal. Chem., 64, 1505 (1992). https://doi.org/10.1021/ac00037a035
  14. S.Y. Ly, J.I. Chae, Y.S. Jung, W.W. Jung, H.J. Lee and S.H. Lee, Nahrung/Food, 48, 201 (2004). https://doi.org/10.1002/food.200300394
  15. M. Dominguez, A. Aldaz and F. Sanchez-Burgos, J. Electroanal. Chem. Interfacial Electrochem., 68, 345 (1976). https://doi.org/10.1016/S0022-0728(76)80274-4
  16. L. Tian, L. Chen, L. Liu, N. Lu, W. Song and H. Xu, Sens. Actuators B, 113, 150 (2006). https://doi.org/10.1016/j.snb.2005.02.041
  17. L. Falat and H.-Y. Cheng, J. Electroanal. Chem., 157, 393 (1983).
  18. C.R. Raj and T. Ohsaka, J. Electroanal. Chem., 496, 44 (2001). https://doi.org/10.1016/S0022-0728(00)00335-1
  19. D. Wen, S. Guo, S. Dong and E. Wang, Biosens. Bioelectron., 26, 1056 (2010). https://doi.org/10.1016/j.bios.2010.08.054
  20. A. Salimi, H. MamKhezri and R. Hallaj, Talanta, 70, 823 (2006). https://doi.org/10.1016/j.talanta.2006.02.015
  21. S.A. Kumar, P.-H. Lo and S.-M. Chen, Biosens. Bioelectron., 24, 518 (2008). https://doi.org/10.1016/j.bios.2008.05.007
  22. Z. Samec, E. Samcova and H.H. Girault, Talanta, 63, 21 (2004). https://doi.org/10.1016/j.talanta.2003.11.023
  23. G. Herzog, V. Kam, A. Berduque and D.W.M. Arrigan, J. Agr. Food Chem., 56, 4304 (2008). https://doi.org/10.1021/jf7035966
  24. H.J. Lee, C. Beriet and H.H. Girault, J. Electroanal. Chem., 453, 211 (1998). https://doi.org/10.1016/S0022-0728(98)00171-5
  25. H.J. Lee, G. Lagger, C.M. Pereira, A.F. Silva and H.H. Girault, Talanta, 78, 66 (2009). https://doi.org/10.1016/j.talanta.2008.10.059
  26. D. Zhan, Y. Yuan, Y. Xiao, B. Wu and Y. Shao, Electrochim. Acta, 47, 4477 (2002). https://doi.org/10.1016/S0013-4686(02)00519-4
  27. S.N. Faisal, C.M. Pereira, S. Rho and H.J. Lee, Phys. Chem. Chem. Phys., 12, 15184 (2010). https://doi.org/10.1039/c0cp00750a
  28. H.J. Lee, P.D. Beattie, B.J. Seddon, M.D. Osborne and H.H. Girault, J. Electroanal. Chem., 440, 73 (1997).
  29. Z. Stojek, M. Clszkowska and J.G. Osteryoung, Anal. Chem., 66, 1507 (1994). https://doi.org/10.1021/ac00081a024

Cited by

  1. Facile determination of formal transfer potentials for hydrophilic alkali metal ions at water|ionic liquid microinterfaces vol.14, pp.40, 2012, https://doi.org/10.1039/c2cp42107k
  2. Polyoxometalates as solution-phase electrocatalytic mediators for reduced electrode fouling and the improved oxidative response of phenols vol.69, 2016, https://doi.org/10.1016/j.elecom.2016.05.020
  3. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food vol.221, 2017, https://doi.org/10.1016/j.foodchem.2016.11.107
  4. Determination of alkali metal ion transfers at liquid|liquid interfaces stabilized by a micropipette vol.684, 2012, https://doi.org/10.1016/j.jelechem.2012.08.013
  5. Size-tunable hydrophilic cerium oxide nanoparticles as a ‘turn-on’ fluorescence sensor for the rapid detection of ultralow concentrations of vitamin C vol.6, pp.58, 2016, https://doi.org/10.1039/C6RA07504E