DOI QR코드

DOI QR Code

Improved Tri-iodide Reduction Reaction of Co-TMPP/C as a Non-Pt Counter Electrode in Dye-Sensitized Solar Cells

  • Kim, Jy-Yeon (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Lee, Jin-Kyu (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Han, Sang-Beom (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Lee, Young-Woo (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Park, Kyung-Won (Department of Chemical and Environmental Engineering, Soongsil University)
  • Received : 2010.11.24
  • Accepted : 2010.12.28
  • Published : 2010.12.30

Abstract

We report Co-tetramethoxyphenylporphyrin on carbon particles (Co-TMPP/C) as a non-Pt catalyst for tri-iodide reduction in dye-sensitized solar cells (DSSCs). The presence of well-dispersed carbon and cobalt source in the catalyst surface is confirmed by transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray analysis. In the C 1s, Co 2p, and N 1s peaks measured by X-ray photoelectron spectroscopy, the C-N, Co-$N_4$, and N-C are assigned to the component at 285.7, 781.8, and 401 eV, respectively. Especially, the Co-TMPP/C shows improved current density, diffusion coefficient, and charge-transfer resistance in the ${I_3}^-/I^-$ redox reaction compared to conventional catalysts. Furthermore, in the DSSCs performance, the Co-TMPP/C shows increased short circuit current density, higher open circuit voltage, and improved cell efficieny in comparison with Pt/C.

Keywords

References

  1. B. O'Reagen and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  3. A. Hagfeldt and M. Gratzel, Chem. Rev., 95, 49 (1995). https://doi.org/10.1021/cr00033a003
  4. A. Kay and M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 99 (1996). https://doi.org/10.1016/0927-0248(96)00063-3
  5. H. Lindstrom, A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist and A. Hagfeldt, Nano. Lett., 1, 97 (2001). https://doi.org/10.1021/nl0055254
  6. M. Gratzel, Nature, 414, 338 (2001). https://doi.org/10.1038/35104607
  7. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Gratzel, J. Phys. Chem. B, 107, 8981 (2003). https://doi.org/10.1021/jp022656f
  8. A. I. Popov and D. H. Geske, J. Am. Chem. Soc., 80, 1340 (1958). https://doi.org/10.1021/ja01539a018
  9. K. Kalyanasundaram and M. Gratzel, Coordin. Chem. Rev., 77, 347 (1998).
  10. Y.-C. Shen, H. Deng, J. Fang and Z. Lu, Colloid Surf. A: Physicochem. Eng. Asp., 175, 135 (2000). https://doi.org/10.1016/S0927-7757(00)00524-0
  11. T. C. Wei, C. C. Wan and Y. Y. Wang, Appl. Phys. Lett., 88, 103122(1) (2006).
  12. A. Zaban, S. G. Chen, S. Chappel and B. A. Gregg, Chem. Commun., 2231 (2000).
  13. S. G. Chen, S. Chappel, Y. Diamant and A. Zaban, Chem. Mater., 13, 4629 (2001). https://doi.org/10.1021/cm010343b
  14. S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann and R. Kern, Chem. Commun., 2011 (2005).
  15. H.-J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N.-G. Park, Adv. Mater., 20, 195 (2008). https://doi.org/10.1002/adma.200700840
  16. D. Chen, F. Huang, Y.-B. Cheng and R. A. Caruso, Adv. Mater., 21, 2206 (2009). https://doi.org/10.1002/adma.200802603
  17. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, J. Electroanal. Chem., 570, 257 (2004). https://doi.org/10.1016/j.jelechem.2004.04.004
  18. X. Fang, T. Ma, G. Guan, M. Akiyama and E. Abe, J. Photochem. Photobiol. A: Chem., 164, 179 (2004). https://doi.org/10.1016/j.jphotochem.2003.12.024
  19. Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, J. Photochem. Photobiol A: Chem., 164, 153 (2004). https://doi.org/10.1016/j.jphotochem.2003.11.017
  20. S.-S. Kim, Y.-C. Nah, Y.-Y. Noh, J. Jo and D.-Y. Kim, Electrochim. Acta, 51, 3814 (2006). https://doi.org/10.1016/j.electacta.2005.10.047
  21. Y.-J. Song, J.-K. Oh and K.-W. Park, Nanotechnology, 19, 335602 (2008). https://doi.org/10.1088/0957-4484/19/33/335602
  22. E. Ramasamy, W.J. Lee, D.Y. Lee and J.S. Song, Electrochem. Commun., 10, 1087 (2008). https://doi.org/10.1016/j.elecom.2008.05.013
  23. Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin and L. Fan, Electrochem. Commun., 10, 1299 (2008). https://doi.org/10.1016/j.elecom.2008.06.029
  24. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sources, 181, 172 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.029
  25. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, J. Photochem. Photobiol A: Chem., 194, 27 (2008). https://doi.org/10.1016/j.jphotochem.2007.07.010
  26. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, Sol. Energy Mater. Sol. Cells, 92, 814 (2008). https://doi.org/10.1016/j.solmat.2007.12.012
  27. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen and Q. Meng. Electrochem. Commun., 9, 596 (2007). https://doi.org/10.1016/j.elecom.2006.10.028
  28. K.-M. Lee, P.-Y. Chen, C.-Y. Hsu, J.-H. Huang, W.-H. Ho, H.-C. Chen and K.-C. Ho, J. Power Sources, 188, 313 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.075
  29. J.-G. Chen, V. Suryanarayanan, K.-M. Lee and K.-C. Ho, Sol. Energy Mater. Sol. Cells, 91, 1432 (2007). https://doi.org/10.1016/j.solmat.2007.03.011
  30. J.-G. Chen, H.-Y. Wei and K.-C. Ho, Sol. Energy Mater. Sol. Cells, 91, 1472 (2007). https://doi.org/10.1016/j.solmat.2007.03.024

Cited by

  1. Structural properties of electrodeposited Cu-Ag alloys vol.251, 2017, https://doi.org/10.1016/j.electacta.2017.08.097