DOI QR코드

DOI QR Code

Improvement of Thermal Stability of Ni-Silicide Using Vacuum Annealing on Boron Cluster Implanted Ultra Shallow Source/Drain for Nano-Scale CMOSFETs

  • Received : 2010.08.26
  • Published : 2010.12.31

Abstract

In this paper, Ni silicide is formed on boron cluster ($B_{18}H_{22}$) implanted source/drains for shallow junctions of nano-scale CMOSFETs and its thermal stability is improved, using vacuum annealing. Although Ni silicide on $B_{18}H_{22}$ implanted Si substrate exhibited greater sheet resistance than on the $BF_2$ implanted one, its thermal stability was greatly improved using vacuum annealing. Moreover, the boron depth profile, using vacuum post-silicidation annealing, showed a shallower junction than that using $N_2$ annealing.

Keywords

References

  1. C.Y. Lu, J.M. Sung, “Reverse short-channel effects on threshold voltage in submicrometer salicide devices,” Electron Device Lett., IEEE Vol.10, p.446, 1989. https://doi.org/10.1109/55.43095
  2. D.-X. Xu, S. R. Das, C. J. Peters, and L. E. Erickson, “Material aspects of nickel silicide for ULSI applications,” Thin Solid Films 326, p.143, 1998. https://doi.org/10.1016/S0040-6090(98)00547-1
  3. X. Lu, L. Shao, X. Wang, J. Liu, W. Chu, J. Bennet, L. Larson, and P.Ling, “Cluster-ion implantation: An approach to fabricate ultrashallow junctions in silicon,” J. Vac. Sci. Technol. B 20, 992, 2002. https://doi.org/10.1116/1.1479361
  4. Y. Kawasaki, T. Kuroi, T. Yamashita, K. Horita, T. Hayashi, M. Ishibashi, M. Togawa, Y. Ohno, M. Yoneda, T. Horsky, D. Jacobson, and W. Krull, “Ultra-shallow junction formation by B18H22 ion implantation,” Nucl. Instrum. Methods Phys. Res. B 237, 25, 2005. https://doi.org/10.1016/j.nimb.2005.04.073
  5. M. Ishibashi, Y. Kawasaki, K. Horita, T. Kuroi, T. Yamashita, K. Shiga, T. Hayashi, and M. Togawa, “Advantages of B18H22 Ion Implantation and Influence on PMOS Reliability,” International Workshop on Junction Technology’05, p.31, 2005.
  6. C. Lavoie, F. M. d’Heurle, C. Detavernier, and C. Cabral Jr., “Towards implementation of a nickel silicide process for CMOS technologies,” Microelectron. Eng. 70, p.144, 2003. https://doi.org/10.1016/S0167-9317(03)00380-0
  7. W.J. Lee, S.Y. Oh, Y.J. Kim, Y.Y. Zhang, Z. Zhong, S.Y. Jung, H.H. Ji, K.J. Hwang, Y.C. Kim, H.T. Cho, W.A. Knull, J.S. Wang, and H.D. Lee, “Formation and Thermal Stability Characteristics of Ni Silicide on Boron Cluster ($B_{18}H_{22}$) Implanted Source/Drain,” International Workshop on Junction Technology’06, p.184, 2006.
  8. A. Agarwal, H.-J. Gossmann, D. C. Jacobson, D. J. Eaglesham, M.Sosnowski, J. M. Poate, I. Yamada, J. Matsuo, and T. E. Haynes, “Transient enhanced diffusion from decaborane molecular ion implantation,” Appl.Phys. Lett. 73, 2015, 1998. https://doi.org/10.1063/1.122353
  9. H.I. Iwai, T.Ohguro, and S.I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectron. Eng., Vol.60, p.157, 2000.
  10. T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys. 77, p.417, 1995. https://doi.org/10.1063/1.359343

Cited by

  1. Improvement of Thermal Stability of Nickel Silicide Using Co-sputtering of Ni and Ti for Nano-Scale CMOS Technology vol.13, pp.3, 2013, https://doi.org/10.5573/JSTS.2013.13.3.252
  2. Novel Ni silicide formed with a Ni/Er/Ni/TiN structure for thermal stable and low contact resistance source/drain in MOSFETs vol.53, pp.8S3, 2014, https://doi.org/10.7567/JJAP.53.08NE05
  3. Investigation on Suppression of Nickel-Silicide Formation By Fluorocarbon Reactive Ion Etch (RIE) and Plasma-Enhanced Deposition vol.13, pp.1, 2013, https://doi.org/10.5573/JSTS.2013.13.1.022