DOI QR코드

DOI QR Code

Identification of Three-Parameter Models from Step Response

스텝응답을 이용한 3매개변수 모델의 식별

  • Received : 2010.07.09
  • Accepted : 2010.10.27
  • Published : 2010.12.01

Abstract

This paper provides an identification method for three-parameter models i.e. first order with dead time models and second order with dead time models. The proposed identification method is based on step response and can be easily implemented using digital microprocessors. The proposed method first identifies the order of the plant i.e. first order or second order from the behavior of the plant with constant input. After the order of the plant is determined, a test step input is applied to the system and the three parameters of the plant are obtained from the corresponding response of the plant. The output of the plant need not to be zero when the test signal is applied. The efficacy of proposed algorithms is verified through simulation and experiment.

Keywords

References

  1. K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning, 2nd. Ed., Instrument Society of America, Research Triangle Park, NC, 1995.
  2. J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, vol. 64, pp. 759-768, 1942.
  3. E. Poutin and A. Pomerleau, “PID tuning for integrating and unstable processes,” IEE Proc Control Theory Applications, vol. 143, no. 5, pp. 429-435, September 1996. https://doi.org/10.1049/ip-cta:19960442
  4. H. Rake, “Step response and frequency response methods,” Automatica, vol. 16, no. 5, pp. 519-526, Sep. 1980. https://doi.org/10.1016/0005-1098(80)90075-8
  5. D. E. Seborg, T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, John Wiley & Sons, pp. 169-177, 1989.
  6. A. V. Methew and F. W. Fairman, “Identification in the presence of initial conditions,” IEEE Trans. on Automatic Contr., vol. 17. no. 3, pp. 394 396, Jun. 1972. https://doi.org/10.1109/TAC.1972.1099997
  7. Q. G. Wang and Y. Zhang, “Robust identification of continuous systems with dead time from step responses,” Automatica, vol. 37, no. 3, pp. 377-390, Mar. 2001. https://doi.org/10.1016/S0005-1098(00)00177-1
  8. G. Fedele, “A new method to estimate a first order plus time delay model from step response,” Journal of the Franklin Institute 346, no. 1, pp. 1-19, Feb. 2009 https://doi.org/10.1016/j.jfranklin.2008.05.004
  9. Q. Bi, W. J. Cai, E. L. Lee, Q. G. 1. Wang, C. C. Hang, and Y. Zhang, “Robust identification of first order plus dead time model from step response,” Control Engineering Practice, vol. 7, no. 1, pp. 71-77(7), Jan.1999. https://doi.org/10.1016/S0967-0661(98)00166-X
  10. Q. G. Wang, X. Guo, and Y. Zhang, “Direct identification of continuous time delay systems from step responses,” Journal of Process Control, vol. 11, no. 5, pp. 531-542, Oct. 2001. https://doi.org/10.1016/S0959-1524(00)00031-7
  11. L. Wang and W. R. Cluett, “System identification based on closed loop step response data,” IEE Proc. Control Theory and Application, vol. 141, no. 2, pp. 107-110, Mar. 1994. https://doi.org/10.1049/ip-cta:19949971
  12. Q. G. Wang, C. C. Hang, and Q. Bi, “Process frequency response estimation from relay feedback,” Control Eng. Practice, vol. 5, no. 9, pp. 1293-1302, Sep. 1997. https://doi.org/10.1016/S0967-0661(97)84368-7
  13. S. Vivek and M. Chidambaram, “Identification using single symmetrical relay feedback test,” Computer & Chemical Engineering, vol. 29, no. 7, pp. 1625-1630, Jun. 2005. https://doi.org/10.1016/j.compchemeng.2005.01.002
  14. K. P. Ahn, J. S. Lee, J. S. Lim, and Y. I. Lee, “Auto tuning of PID/PIDA controllers based on step response,” Journal of Institute of Control, Robotics and System, vol. 15, no. 10, Oct. 2009. https://doi.org/10.5302/J.ICROS.2009.15.10.974
  15. ARM920T (Rev 1), “Technical reference manual,” ARM Limited. 2001. web:www.arm.com