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GENERALIZED CONVOLUTION OF UNIFORM
DISTRIBUTIONS'
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ABSTRACT. we investigate the n-fold convolution of the uniform distribu-
tions. First, we are concerned with the explicit distribution function of
the partial sum (, when the random variables are independent and has
identically uniform distribution, next, we determine the n-fold convolution
distribution of {;, when the identically distributed condition is not satisfied.
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1. Introduction

The sum (,, of n mutually independent random variables &1,&s,- -+ , &, plays
an important role in many fields ; information theory, insurance mathematics,
economics, engineering and medical applications, etc. [2,4,5,7,9]. In information
theory, entropy is the measure of the amount of information that is missing
before reception and is sometimes referred to as Shannon entropy [1,4]. Shannon
entropy is a broad and general concept which finds applications in information
theory. It was originally devised by Claude Shannon in 1948 to study the amount
of information in a transmitted message [1]. The entropy of the probability
density p(z) is defined by

/ " () loglp(x)] ' de. (1)

—o0
Uniform distribution has maximum entropy among all distributions of continu-
ous type with finite support [4].
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Mathematically, a convolution is defined as the integral over all space of one
function f; at u times another function fy at x —wu. The integration is taken over
the variable u, typically from minus infinity to infinity over all the dimensions.
So the convolution is a function f; * fo of a new variable x, as shown in the
following equation

ﬁamwszﬁwmm—wm. @)

Let F} and F5 be two distribution functions, then

Gi(x) = / ¥ Rl — w)dBs (). (3)

— 00
is also a distribution function. Equation (3) defines an associative and commu-
tative operation, and the result distribution is called the convolution of F; and
F,, and we write the equation (3) in the symbolic form G35 = F; * F». If one
of the F} and F5 is absolutely continuous, then G3 is also absolutely continuous
and if we let F}/(z) = fi(x) and Fy/(x) = fa(z), then G35 '(z) = f1 * fa(x), and
write also g5 = f1 * fa.

Let F; and f; denote the distribution function and the density function of
the summand &, i = 1,2,--- ,n and let G be the distribution function of the
partial sum (, = & + -+ + &,. Then the G (z) equals the n-fold convolution
Fys Fysooox Fo(x) and g7 (x) = fr* fo- - fu(2).

In this paper, we investigate the n-fold convolution of the uniform distribu-
tions. First, we are concerned with the explicit distribution function of {,, when
the random variables are independent and has identically uniform distribution,
next, we determine the n-fold convolution distribution of (,, when the identically
distributed condition is not satisfied.

2. When £1,&, -+ , £, are independent and identically distributed

Let &1,&s,- -+ , &, be independent and identically distributed random variables
with the common distribution function F' and probability density function f.
Then the distribution function of the sum (, is the n-fold convolution of itself
F such as

F(z) = FO~ D"« F(z) (n>2) (4)

where F''*(z) = F(x) and its probability density function is

fr(@) = fO7 e fe) (n>2) (5)
where f1*(z) = f(x).

Suppose that the random variables &1, &s, - - - , &, have the uniform distribution
on («, 8), 8 > «, that is, the common probability density function is given by

F@) = 5 T @), (©)
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where Iy(x) is 1 for € U and 0 otherwise. Then the sum (s = & + & have a
symmetric triangle distribution and its density function is

1(0) = s Tismar@) + o T (o) ™)

By Renyi [8] the density function of the sum of n mutually independent random
variables with uniform distribution on (—1,1) is

2] n n-+u n
(_1)j ) ( ;— _]> I(—n,n)(u)> (8)

Jin —j)!

DN =

§=0
where [u] is the largest integer less than or equal to u. Taking = (—a+f)u/2+
(a+ B)n/2, it is possible to gain the probability density function f™* of the sum
¢ as following ;

n—1
- 1 T j n T — no )
f (l‘) = ﬁ_aZ(_l) '(TL—])' ( ﬁ—a _]> I(na,n,@)(x)v (9)

=0 J:

where 7 is a function of n,x,« and S which is the largest integer less than or
equal to (z — na)/(8 — «). The distribution function of ¢, is obtained by

() = /0 P (Ot L) (2) + Tonsooo) (@). (10)

So we have the following theorem.

Theorem 1. The distribution function of the sum of n mutually independent
random variables with uniform distribution on («, ) is

’ . 1 T — no "
F™(z) = —1)7 - : =71 Ttnans) (@) + Ingooy(x), (11
() jZ::O( )]!(n_j)!<3_a J) (namd) (@) + Iy (@), (11)
where T is a function of n,x,a and B which is the largest integer less than or
equal to (x —na) /(B — ).

Proof. The proof follows immediately from the equations (9) and (10). O

3. When &1,&,--- ,&, are independent but not identically distributed

Let &1,&, -+ , &, be independent uniformly distributed random variables with
&~ U(ay, Bi), Bi > agyi=1,2,--- ,nand let F; and f; the distribution function
and the density function of &, = 1,2,--- ,n, respectively. Then the random
variable &; — a; has the uniform distribution on (0, 4;),4; = 8;—«;,i =1,2,--- | n
and independent property. We determine the explicit form of the distribution
of the partial sum ¢, = & + -+ + &, throughout the distribution of {, — (a1 +
Qo+ ay).
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Let W,, be the set of all n-tuples of elements of {0,1} with the standard
definitions of addition and scalar multiplication. Then W, is a subspace of the
n-dimensional Euclidean vector space R". Let S, be the set of all scalar products
between w,, € W,, and t,, € R™, that is,

Sp = {<wp,tn > |w, € W, t, e R"}, (12)

where< -,- > is the scalar product on R™ and let for any given «;,3;,1 =
17 2’ ... 7n

S ={wily +woly + - +wply, | w; € {0,1},i=1,2,--- ,n} C S, (13)

where ¢; = 8; — «;, i = 1,2,--- ,n. Then S has the 2™ values 0,¢1,0s,--- , {1 +
-+« + £,. We obtain the rearrangement set S = {s,1, Sn2," - , Snan } With s,1(=
0) <spo <+ < spam(=01+Llo+ -+, say L)

For any = € R! we define

7f=max{j | ©—sp; >0ands,; €S forj=12---,2"}. (14)

Then the 7,5 is the number of index j with  — s,,; > 0,5 = 1,2,--- ,2". Now
we know that for any «;, 8, (i —«a; >0, i = 1,2,--- n) and index j, j =
1,2,---,2" there exist a vector w,, = (w1, wa,- - ,w,) € W,, such that

Snj :wlfl +w2€2—|—-~-+wn£n (j:1,2,~'~ ,2”). (15)

In this time, for any given index j we let wy,; be the vector w,, which is satisfied
the following condition

Snj =< Wﬂm(éla"' 7€n) > (16)

where < -, - > is the scalar product on R".

For example, If n = 2 and max {¢1,03} < x < {1 + l3(= Ls), then
=3
Wo1 = (0,0)7 Woo = (0,22), Wo3 = (6170) (lf 162 < 61) (17)
S$91 = 0, S99 = min {fl,gg}, S93 = INnax {él,ﬁg}

and the distribution function Ga(x) of (s — As is
P((a—Ay<zx)= / Fi(x1 — z2)dF>(x2), (18)

where F; is the distribution function of & — ay,7 = 1,2 and As = a1 + as.
Thus we have the following lemma.

Lemma 1. Let the random variables &1,&2 be independent and uniformly dis-
tributed on (0,4;),4; > 0,4 = 1,2. Then the distribution function G% of the sum

(=& +& is

=+
1 < _
Gs(x) = 2gngZ(_1)H w2 (2 = 57)? I(0,L.) () + I[Ly,00)(2),  (19)

j=1
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where 7 is defined by equation (14) and || - || is the norm of the vector.

Proof. The convolution G5 of Fy and F; is represented by

G;(m)://—i_ B dFl(l‘1)dF2(.T2). (20)

By integrating (20) we obtain

0, <0
L 0<

2616233’ <z <mo

* 1
GQ(I) = 2.0 {xQ - (Jf - m2)2}? me <z < M2 (21)

142

1*@(132*%)27 My <2z <Ly

1, SL'ZLQ

where my = min{¢y, ¢5}, My = max{¢1,¢>}. Since

1 1
1— Ly—2)2 = 2 (z—mo)? — (x — My)? 22
2£1£2( 2 x) 26162 {.’E (.’IJ m2) (x 2) }7 ( )

we know that for 0 < z < Lo
I
* wWaj 2

G3(2) = g ;(—1)” 5 (@ = 5;)% Ig,1) (@) (23)
which completes the proof. O

Lemma 2. Under the conditions of Lemma 1, the distribution function G% of
the sum (o = &1 + &2 is

Gs(x) = 2/3152,2(_1)“ w2 I (2 — 5)? Iig,00) (). (24)

Proof. If x > Lo, then the number 7" = 4. By equation (22) we have
1 4
) — _\wes 1l — 502
G3(@) = 3= (DI = 5y)
=1 (25)

12 121
= / f1($1>f2(l‘2)d$1d$2 =1.
0 0

Hence from Lemma 1 we obtain the result in lemma. O
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Theorem 2. Let the random wvariables &1,&s, -+ ,&, be independent and uni-
formly distributed on (0,¢;),¢; > 0,i = 1,2,--- n. Then the distribution func-
tion G, of the sum C, =& + & +---+ &, s

G (z) = S TN Z DI (@ — 57)" I(,00 (), (26)

where 7,7 is defined by equation (14) and s; (j =1,2,---,7,7) is the combination
form with respect to ¢; (i =1,2,--- ,n).

Proof. 1t is trivial for < 0. If & > L, (= {1 +--- 4+ £,, n > 2), then the
distribution function GZ%(z) is the integral of n-fold convolution of the density
functions fi, fo,--- and f, over R! ;

e /f1*f2* s ful)du (27)

Since fy * fa * -+ x fy, is a density function, the distribution function G7%(z) is
equal to 1.

For 0 < = < L, the proof will be performed by mathematical induction
with respect to n. For n = 2, we obtain the result in lemma 2. Suppose that
the equation (26) is true for any positive integer k (k < n) and g; denote the
density function of (x. Then the distribution function Gj_ ; of (441 is obtained
by convolution of G and Fj, such as

Gia@) = [ Gilo—o)dP(on) 0<a<Lin) (@9
Rl
and
* d *
G () = I k1(®) (0 <2 < Ligr). (29)
Since
1 Liy1
fa@) = [ Gile— anp)do, (30)
k+1 Jo

the density function of (41 is

G (@) = i [Gi(x) - Gz — tisn)]

i
1 Tk
W wWes (e — o) NF (e — I
lekﬂ Z( DEWe 1z — sg;)" — (2 — i1 — Sky) (31)
1 TI:—+1 X
lek+1 Z( 1)” Wkt Il (.%‘— 5(k+1)j) (0 <z < Lis1).
1] 1
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and 0 otherwise. Thus we have the distribution function

4
1 s k+1
G* - - —DIwesns I (g — g ‘ I (32)
k+1( ) (k + 1)' Hk+1 ) le( ) ( (k-‘rl)]) (0,Lk41)
which completes the proof. O

Corollary 1. Under the conditions of Theorem 2, the density function g, of the
sum Cp 1s

4
s+

1
(n—1)! H? i
where Ly, = > | 4.

Proof. Since for 0 < z < L,

(=Dl (@ — )" Loz, (), (33)

g (x) =

J

G (z) = n'HZ v Z DIhwns (g — 5,)" (34)

and G /() = gn(x), the density function is
* DI wns (g — g )"t
gn(x) - (n _ 1 'HH é Z J ZL' s]) . (35>
And also since G%(z) = 1 for > L,,, we obtain the result in corollary. O

Theorem 3. Let the random wvariables &1,&s,- -+ ,&, be independent and uni-
formly distributed on (o, ;) with B; —a; > 0,i=1,2,--- n. Then the density
function b of the sum ¢, =& + &+ -+ &, is

+
1 n

hy(x) = - D M+ A, — )" Iia 5y(2),

( ) (n_l)'H7:1(B’L_a’L);( ) ( J) (An, n)( )
(36)
where A, = 3" o, By =1 B and s; (j=1,2,---,7,7) is the combina-

tion form with respect to 5; —a; (i=1,2,---,n).

Proof. Let v; =& — «;, i = 1,2,--- ,n. Then v; has the uniform distribution

with the support (0,¢;), ¢; = 8; — a;, ¢ =1,2,--- ,n and mutually independent
property between their. By corollary 1 the sum Y ., v, = (, — A, has the
density function g (u) with support (0, L,,), where L,, = Y | ¢;. Letting z =
u — A, the density function h has the support (A, By,), where A, =Y " | «;
and B, = .1, ;. By transformation method we obtain easily the result in
theorem. O
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Corollary 2. Under the conditions of Theorem 3, the distribution function H:
of the sum (, is

1 i , "
He) = LG a2 A ) @) (6T)

Proof. For any given x

H (z) = / " () (38)

—0o0
Since hy(z) = 0 for x < A,,, the distribution function is

i) = | " b dula, 5, (@) + T, o0 (@). (39)

But if z > B, then 7,7 = 2". Since

) on
— 1) 1w I A, —s)" =1 40
oy H?:](/Bl _az’);( ) (x + 8]) ) (40)
so we have
1 i
Hy\(z) = —== (=D W@+ Ay = )" Ia, 5,) (@) + I8, o).
n! Hi:l(ﬁi _ai)j; J ( ) [ )
(41)
Thus the proof is complete. O
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