GENERALIZED CONVOLUTION OF UNIFORM DISTRIBUTIONS ${ }^{\dagger}$

JONG SEONG KANG, SUNG LAI KIM, YANG HEE KIM AND YU SEON JANG*

Abstract

. we investigate the n-fold convolution of the uniform distributions. First, we are concerned with the explicit distribution function of the partial sum ζ_{n} when the random variables are independent and has identically uniform distribution, next, we determine the n-fold convolution distribution of ζ_{n} when the identically distributed condition is not satisfied.

AMS Mathematics Subject Classification : 60E05, 60G50, 62E15, 94A17 key words and phrases : uniform distribution, support, convolution distribution, n-fold convolution

1. Introduction

The sum ζ_{n} of n mutually independent random variables $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ plays an important role in many fields ; information theory, insurance mathematics, economics, engineering and medical applications, etc. [2,4,5,7,9]. In information theory, entropy is the measure of the amount of information that is missing before reception and is sometimes referred to as Shannon entropy $[1,4]$. Shannon entropy is a broad and general concept which finds applications in information theory. It was originally devised by Claude Shannon in 1948 to study the amount of information in a transmitted message [1]. The entropy of the probability density $p(x)$ is defined by

$$
\begin{equation*}
\int_{-\infty}^{\infty} p(x) \log [p(x)]^{-1} d x \tag{1}
\end{equation*}
$$

Uniform distribution has maximum entropy among all distributions of continuous type with finite support [4].

[^0](c) 2010 Korean SIGCAM and KSCAM.

Mathematically, a convolution is defined as the integral over all space of one function f_{1} at u times another function f_{2} at $x-u$. The integration is taken over the variable u, typically from minus infinity to infinity over all the dimensions. So the convolution is a function $f_{1} * f_{2}$ of a new variable x, as shown in the following equation

$$
\begin{equation*}
f_{1} * f_{2}(x)=\int_{-\infty}^{\infty} f_{1}(u) f_{2}(x-u) d u \tag{2}
\end{equation*}
$$

Let F_{1} and F_{2} be two distribution functions, then

$$
\begin{equation*}
G_{2}^{*}(x)=\int_{-\infty}^{\infty} F_{1}(x-u) d F_{2}(u) \tag{3}
\end{equation*}
$$

is also a distribution function. Equation (3) defines an associative and commutative operation, and the result distribution is called the convolution of F_{1} and F_{2}, and we write the equation (3) in the symbolic form $G_{2}^{*}=F_{1} * F_{2}$. If one of the F_{1} and F_{2} is absolutely continuous, then G_{2}^{*} is also absolutely continuous and if we let $F_{1}{ }^{\prime}(x)=f_{1}(x)$ and $F_{2}{ }^{\prime}(x)=f_{2}(x)$, then $G_{2}^{*}{ }^{\prime}(x)=f_{1} * f_{2}(x)$, and write also $g_{2}^{*}=f_{1} * f_{2}$.

Let F_{i} and f_{i} denote the distribution function and the density function of the summand $\xi_{i}, i=1,2, \cdots, n$ and let G_{n}^{*} be the distribution function of the partial sum $\zeta_{n}=\xi_{1}+\cdots+\xi_{n}$. Then the $G_{n}^{*}(x)$ equals the n-fold convolution $F_{1} * F_{2} * \cdots * F_{n}(x)$ and $g_{n}^{*}(x)=f_{1} * f_{2} \cdots * f_{n}(x)$.

In this paper, we investigate the n-fold convolution of the uniform distributions. First, we are concerned with the explicit distribution function of ζ_{n} when the random variables are independent and has identically uniform distribution, next, we determine the n-fold convolution distribution of ζ_{n} when the identically distributed condition is not satisfied.

2. When $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ are independent and identically distributed

Let $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ be independent and identically distributed random variables with the common distribution function F and probability density function f. Then the distribution function of the sum ζ_{n} is the n-fold convolution of itself F such as

$$
\begin{equation*}
F^{n *}(x)=F^{(n-1) *} * F(x) \quad(n \geq 2) \tag{4}
\end{equation*}
$$

where $F^{1 *}(x)=F(x)$ and its probability density function is

$$
\begin{equation*}
f^{n *}(x)=f^{(n-1) *} * f(x) \quad(n \geq 2) \tag{5}
\end{equation*}
$$

where $f^{1 *}(x)=f(x)$.
Suppose that the random variables $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ have the uniform distribution on $(\alpha, \beta), \beta>\alpha$, that is, the common probability density function is given by

$$
\begin{equation*}
f(x)=\frac{1}{\beta-\alpha} I_{(\alpha, \beta)}(x), \tag{6}
\end{equation*}
$$

where $I_{U}(x)$ is 1 for $x \in U$ and 0 otherwise. Then the sum $\zeta_{2}=\xi_{1}+\xi_{2}$ have a symmetric triangle distribution and its density function is

$$
\begin{equation*}
f^{2 *}(x)=\frac{x-2 \alpha}{(\beta-\alpha)^{2}} I_{(2 \alpha, \alpha+\beta)}(x)+\frac{2 \beta-x}{(\beta-\alpha)^{2}} I_{(\alpha+\beta, 2 \beta)}(x) \tag{7}
\end{equation*}
$$

By Renyi [8] the density function of the sum of n mutually independent random variables with uniform distribution on $(-1,1)$ is

$$
\begin{equation*}
\frac{1}{2} \sum_{j=0}^{\left[\frac{n+u}{2}\right]}(-1)^{j} \frac{n}{j!(n-j)!}\left(\frac{n+u}{2}-j\right)^{n-1} I_{(-n, n)}(u) \tag{8}
\end{equation*}
$$

where $[u]$ is the largest integer less than or equal to u. Taking $x=(-\alpha+\beta) u / 2+$ $(\alpha+\beta) n / 2$, it is possible to gain the probability density function $f^{n *}$ of the sum ζ_{n} as following ;

$$
\begin{equation*}
f^{n *}(x)=\frac{1}{\beta-\alpha} \sum_{j=0}^{\tau}(-1)^{j} \frac{n}{j!(n-j)!}\left(\frac{x-n \alpha}{\beta-\alpha}-j\right)^{n-1} I_{(n \alpha, n \beta)}(x) \tag{9}
\end{equation*}
$$

where τ is a function of n, x, α and β which is the largest integer less than or equal to $(x-n \alpha) /(\beta-\alpha)$. The distribution function of ζ_{n} is obtained by

$$
\begin{equation*}
F^{n *}(x)=\int_{0}^{x} f^{n *}(t) d t I_{(n \alpha, n \beta)}(x)+I_{[n \beta, \infty)}(x) \tag{10}
\end{equation*}
$$

So we have the following theorem.
Theorem 1. The distribution function of the sum of n mutually independent random variables with uniform distribution on (α, β) is

$$
\begin{equation*}
F^{n *}(x)=\sum_{j=0}^{\tau}(-1)^{j} \frac{1}{j!(n-j)!}\left(\frac{x-n \alpha}{\beta-\alpha}-j\right)^{n} I_{(n \alpha, n \beta)}(x)+I_{[n \beta, \infty)}(x) \tag{11}
\end{equation*}
$$

where τ is a function of n, x, α and β which is the largest integer less than or equal to $(x-n \alpha) /(\beta-\alpha)$.

Proof. The proof follows immediately from the equations (9) and (10).

3. When $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ are independent but not identically distributed

Let $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ be independent uniformly distributed random variables with $\xi_{i} \sim U\left(\alpha_{i}, \beta_{i}\right), \beta_{i}>\alpha_{i}, i=1,2, \cdots, n$ and let F_{i} and f_{i} the distribution function and the density function of $\xi_{i}, i=1,2, \cdots, n$, respectively. Then the random variable $\xi_{i}-\alpha_{i}$ has the uniform distribution on $\left(0, \ell_{i}\right), \ell_{i}=\beta_{i}-\alpha_{i}, i=1,2, \cdots, n$ and independent property. We determine the explicit form of the distribution of the partial sum $\zeta_{n}=\xi_{1}+\cdots+\xi_{n}$ throughout the distribution of $\zeta_{n}-\left(\alpha_{1}+\right.$ $\left.\alpha_{2}+\cdots+\alpha_{n}\right)$.

Let \mathbf{W}_{n} be the set of all n-tuples of elements of $\{0,1\}$ with the standard definitions of addition and scalar multiplication. Then \mathbf{W}_{n} is a subspace of the n-dimensional Euclidean vector space \mathbb{R}^{n}. Let S_{p} be the set of all scalar products between $\mathbf{w}_{n} \in \mathbf{W}_{n}$ and $\mathbf{t}_{n} \in \mathbb{R}^{n}$, that is,

$$
\begin{equation*}
S_{p}=\left\{<\mathbf{w}_{n}, \mathbf{t}_{n}>\mid \mathbf{w}_{n} \in \mathbf{W}_{n}, \mathbf{t}_{n} \in \mathbb{R}^{n}\right\} \tag{12}
\end{equation*}
$$

where $<\cdot, \cdot>$ is the scalar product on \mathbb{R}^{n} and let for any given $\alpha_{i}, \beta_{i}, i=$ $1,2, \cdots, n$

$$
\begin{equation*}
S=\left\{w_{1} \ell_{1}+w_{2} \ell_{2}+\cdots+w_{n} \ell_{n} \mid w_{i} \in\{0,1\}, i=1,2, \cdots, n\right\} \subset S_{p} \tag{13}
\end{equation*}
$$

where $\ell_{i}=\beta_{i}-\alpha_{i}, i=1,2, \cdots, n$. Then S has the 2^{n} values $0, \ell_{1}, \ell_{2}, \cdots, \ell_{1}+$ $\cdots+\ell_{n}$. We obtain the rearrangement set $S=\left\{s_{n 1}, s_{n 2}, \cdots, s_{n 2^{n}}\right\}$ with $s_{n 1}(=$ $0) \leq s_{n 2} \leq \cdots \leq s_{n 2^{n}}\left(=\ell_{1}+\ell_{2}+\cdots+\ell_{n}\right.$, say $\left.L_{n}\right)$

For any $x \in \mathbb{R}^{1}$ we define

$$
\begin{equation*}
\tau_{n}^{+}=\max \left\{j \mid x-s_{n j}>0 \text { and } s_{n j} \in S \text { for } j=1,2, \cdots, 2^{n}\right\} \tag{14}
\end{equation*}
$$

Then the τ_{n}^{+}is the number of index j with $x-s_{n j}>0, j=1,2, \cdots, 2^{n}$. Now we know that for any $\alpha_{i}, \beta_{i},\left(\beta_{i}-\alpha_{i}>0, i=1,2, \cdots, n\right)$ and index $j, j=$ $1,2, \cdots, 2^{n}$ there exist a vector $\mathbf{w}_{n}=\left(w_{1}, w_{2}, \cdots, w_{n}\right) \in \mathbf{W}_{n}$ such that

$$
\begin{equation*}
s_{n j}=w_{1} \ell_{1}+w_{2} \ell_{2}+\cdots+w_{n} \ell_{n} \quad\left(j=1,2, \cdots, 2^{n}\right) \tag{15}
\end{equation*}
$$

In this time, for any given index j we let $\mathbf{w}_{n j}$ be the vector \mathbf{w}_{n} which is satisfied the following condition

$$
\begin{equation*}
s_{n j}=<\mathbf{w}_{n},\left(\ell_{1}, \cdots, \ell_{n}\right)> \tag{16}
\end{equation*}
$$

where $<\cdot, \cdot>$ is the scalar product on \mathbb{R}^{n}.
For example, If $n=2$ and $\max \left\{\ell_{1}, \ell_{2}\right\}<x<\ell_{1}+\ell_{2}\left(=L_{2}\right)$, then

$$
\begin{align*}
& \tau_{2}^{+}=3 \\
& \mathbf{w}_{21}=(0,0), \mathbf{w}_{22}=\left(0, \ell_{2}\right), \mathbf{w}_{23}=\left(\ell_{1}, 0\right) \quad\left(\text { if } \ell_{2}<\ell_{1}\right) \tag{17}\\
& s_{21}=0, s_{22}=\min \left\{\ell_{1}, \ell_{2}\right\}, s_{23}=\max \left\{\ell_{1}, \ell_{2}\right\}
\end{align*}
$$

and the distribution function $G_{2}(x)$ of $\zeta_{2}-A_{2}$ is

$$
\begin{equation*}
P\left(\zeta_{2}-A_{2} \leq x\right)=\int_{-\infty}^{\infty} F_{1}\left(x_{1}-x_{2}\right) d F_{2}\left(x_{2}\right) \tag{18}
\end{equation*}
$$

where F_{i} is the distribution function of $\xi_{i}-\alpha_{i}, i=1,2$ and $A_{2}=\alpha_{1}+\alpha_{2}$.
Thus we have the following lemma.
Lemma 1. Let the random variables ξ_{1}, ξ_{2} be independent and uniformly distributed on $\left(0, \ell_{i}\right), \ell_{i}>0, i=1,2$. Then the distribution function G_{2}^{*} of the sum $\zeta_{2}=\xi_{1}+\xi_{2}$ is

$$
\begin{equation*}
G_{2}^{*}(x)=\frac{1}{2 \ell_{1} \ell_{2}} \sum_{j=1}^{\tau_{2}^{+}}(-1)^{\left\|\mathbf{w}_{2 j}\right\|}\left(x-s_{j}\right)^{2} I_{\left(0, L_{2}\right)}(x)+I_{\left[L_{2}, \infty\right)}(x) \tag{19}
\end{equation*}
$$

where τ_{2}^{+}is defined by equation (14) and $\|\cdot\|$ is the norm of the vector.
Proof. The convolution G_{2}^{*} of F_{1} and F_{2} is represented by

$$
\begin{equation*}
G_{2}^{*}(x)=\iint_{x_{1}+x_{2} \leq x} d F_{1}\left(x_{1}\right) d F_{2}\left(x_{2}\right) . \tag{20}
\end{equation*}
$$

By integrating (20) we obtain

$$
G_{2}^{*}(x)=\left\{\begin{array}{l}
0, \quad x<0 \tag{21}\\
\frac{1}{2 \ell_{1} \ell_{2}} x^{2}, \quad 0 \leq x<m_{2} \\
\frac{1}{2 \ell_{1} \ell_{2}}\left\{x^{2}-\left(x-m_{2}\right)^{2}\right\}, \quad m_{2} \leq x<M_{2} \\
1-\frac{1}{2 \ell_{1} \ell_{2}}\left(L_{2}-x\right)^{2}, \quad M_{2} \leq x<L_{2} \\
1, \quad x \geq L_{2}
\end{array}\right.
$$

where $m_{2}=\min \left\{\ell_{1}, \ell_{2}\right\}, M_{2}=\max \left\{\ell_{1}, \ell_{2}\right\}$. Since

$$
\begin{equation*}
1-\frac{1}{2 \ell_{1} \ell_{2}}\left(L_{2}-x\right)^{2}=\frac{1}{2 \ell_{1} \ell_{2}}\left\{x^{2}-\left(x-m_{2}\right)^{2}-\left(x-M_{2}\right)^{2}\right\} \tag{22}
\end{equation*}
$$

we know that for $0<x<L_{2}$

$$
\begin{equation*}
G_{2}^{*}(x)=\frac{1}{2 \ell_{1} \ell_{2}} \sum_{j=1}^{\tau_{2}^{+}}(-1)^{\left\|\mathbf{w}_{2 j}\right\|}\left(x-s_{j}\right)^{2} I_{\left(0, L_{2}\right)}(x) \tag{23}
\end{equation*}
$$

which completes the proof.

Lemma 2. Under the conditions of Lemma 1, the distribution function G_{2}^{*} of the sum $\zeta_{2}=\xi_{1}+\xi_{2}$ is

$$
\begin{equation*}
G_{2}^{*}(x)=\frac{1}{2 \ell_{1} \ell_{2}} \sum_{j=1}^{\tau_{2}^{+}}(-1)^{\left\|\mathbf{w}_{2 j}\right\|}\left(x-s_{j}\right)^{2} I_{(0, \infty)}(x) \tag{24}
\end{equation*}
$$

Proof. If $x \geq L_{2}$, then the number $\tau_{2}^{+}=4$. By equation (22) we have

$$
\begin{align*}
G_{2}^{*}(x) & =\frac{1}{2 \ell_{1} \ell_{2}} \sum_{j=1}^{4}(-1)^{\left\|\mathbf{w}_{2 j}\right\|}\left(x-s_{j}\right)^{2} \tag{25}\\
& =\int_{0}^{\ell_{2}} \int_{0}^{\ell_{1}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) d x_{1} d x_{2}=1 .
\end{align*}
$$

Hence from Lemma 1 we obtain the result in lemma.

Theorem 2. Let the random variables $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ be independent and uniformly distributed on $\left(0, \ell_{i}\right), \ell_{i}>0, i=1,2, \cdots, n$. Then the distribution function G_{n}^{*} of the sum $\zeta_{n}=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$ is

$$
\begin{equation*}
G_{n}^{*}(x)=\frac{1}{n!\prod_{i=1}^{n} \ell_{i}} \sum_{j=1}^{\tau_{n}^{+}}(-1)^{\left\|\mathbf{w}_{n j}\right\|}\left(x-s_{j}\right)^{n} I_{(0, \infty)}(x) \tag{26}
\end{equation*}
$$

where τ_{n}^{+}is defined by equation (14) and $s_{j}\left(j=1,2, \cdots, \tau_{n}^{+}\right)$is the combination form with respect to $\ell_{i}(i=1,2, \cdots, n)$.

Proof. It is trivial for $x \leq 0$. If $x \geq L_{n}\left(=\ell_{1}+\cdots+\ell_{n}, n \geq 2\right)$, then the distribution function $G_{n}^{*}(x)$ is the integral of n-fold convolution of the density functions f_{1}, f_{2}, \cdots and f_{n} over \mathbb{R}^{1};

$$
\begin{equation*}
G_{k+1}^{*}(x)=\int_{\mathbb{R}^{1}} f_{1} * f_{2} * \cdots * f_{n}(u) d u \tag{27}
\end{equation*}
$$

Since $f_{1} * f_{2} * \cdots * f_{n}$ is a density function, the distribution function $G_{n}^{*}(x)$ is equal to 1 .

For $0<x<L_{n}$ the proof will be performed by mathematical induction with respect to n. For $n=2$, we obtain the result in lemma 2. Suppose that the equation (26) is true for any positive integer $k(k \leq n)$ and g_{k}^{*} denote the density function of ζ_{k}. Then the distribution function G_{k+1}^{*} of ζ_{k+1} is obtained by convolution of G_{k}^{*} and F_{k} such as

$$
\begin{equation*}
G_{k+1}^{*}(x)=\int_{\mathbb{R}^{1}} G_{k}^{*}\left(x-x_{k+1}\right) d F_{k+1}\left(x_{k+1}\right) \quad\left(0<x<L_{k+1}\right) \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{k+1}^{*}(x)=\frac{d}{d x} G_{k+1}^{*}(x) \quad\left(0<x<L_{k+1}\right) \tag{29}
\end{equation*}
$$

Since

$$
\begin{equation*}
G_{k+1}^{*}(x)=\frac{1}{\ell_{k+1}} \int_{0}^{\ell_{k+1}} G_{k}^{*}\left(x-x_{k+1}\right) d x_{k+1} \tag{30}
\end{equation*}
$$

the density function of ζ_{k+1} is

$$
\begin{align*}
g_{k+1}^{*}(x) & =\frac{1}{\ell_{k+1}}\left[G_{k}^{*}(x)-G_{k}^{*}\left(x-\ell_{k+1}\right)\right] \\
& =\frac{1}{k!\prod_{i=1}^{k+1} \ell_{i}}\left[\sum_{j=1}^{\tau_{k}^{+}}(-1)^{\left\|\mathbf{w}_{k j}\right\|}\left(x-s_{k j}\right)^{k}-\left(x-\ell_{k+1}-s_{k j}\right)^{k}\right] \tag{31}\\
& =\frac{1}{k!\prod_{i=1}^{k+1} \ell_{i}} \sum_{j=1}^{\tau_{k+1}^{+}}(-1)^{\left\|\mathbf{w}_{(k+1) j}\right\|}\left(x-s_{(k+1) j}\right)^{k} \quad\left(0<x<L_{k+1}\right) .
\end{align*}
$$

and 0 otherwise. Thus we have the distribution function

$$
\begin{equation*}
G_{k+1}^{*}(x)=\frac{1}{(k+1)!\prod_{i=1}^{k+1} \ell_{i}} \sum_{j=1}^{\tau_{k+1}^{+}}(-1)^{\left\|\mathbf{w}_{(k+1) j}\right\|}\left(x-s_{(k+1) j}\right)^{k+1} I_{\left(0, L_{k+1}\right)} \tag{32}
\end{equation*}
$$

which completes the proof.

Corollary 1. Under the conditions of Theorem 2, the density function g_{n}^{*} of the sum ζ_{n} is

$$
\begin{equation*}
g_{n}^{*}(x)=\frac{1}{(n-1)!\prod_{i=1}^{n} \ell_{i}} \sum_{j=1}^{\tau_{n}^{+}}(-1)^{\left\|\mathbf{w}_{n j}\right\|}\left(x-s_{j}\right)^{n-1} I_{\left(0, L_{n}\right)}(x) \tag{33}
\end{equation*}
$$

where $L_{n}=\sum_{i=1}^{n} \ell_{i}$.
Proof. Since for $0<x<L_{n}$

$$
\begin{equation*}
G_{n}^{*}(x)=\frac{1}{n!\prod_{i=1}^{n} \ell_{i}} \sum_{j=1}^{\tau_{n}^{+}}(-1)^{\left\|\mathbf{w}_{n j}\right\|}\left(x-s_{j}\right)^{n} \tag{34}
\end{equation*}
$$

and $G_{n}^{*}{ }^{\prime}(x)=g_{n}(x)$, the density function is

$$
\begin{equation*}
g_{n}^{*}(x)=\frac{1}{(n-1)!\prod_{i=1}^{n} \ell_{i}} \sum_{j=1}^{\tau_{n}^{+}}(-1)^{\left\|\mathbf{w}_{n j}\right\|}\left(x-s_{j}\right)^{n-1} \tag{35}
\end{equation*}
$$

And also since $G_{n}^{*}(x)=1$ for $x \geq L_{n}$, we obtain the result in corollary.

Theorem 3. Let the random variables $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ be independent and uniformly distributed on $\left(\alpha_{i}, \beta_{i}\right)$ with $\beta_{i}-\alpha_{i}>0, i=1,2, \cdots, n$. Then the density function h_{n}^{*} of the sum $\zeta_{n}=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$ is

$$
\begin{equation*}
h_{n}^{*}(x)=\frac{1}{(n-1)!\prod_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)} \sum_{j=1}^{\tau_{n}^{+}}(-1)^{\left\|\mathbf{w}_{n j}\right\|}\left(x+A_{n}-s_{j}\right)^{n-1} I_{\left(A_{n}, B_{n}\right)}(x) \tag{36}
\end{equation*}
$$

where $A_{n}=\sum_{i=1}^{n} \alpha_{i}, B_{n}=\sum_{i=1}^{n} \beta_{i}$ and $s_{j}\left(j=1,2, \cdots, \tau_{n}^{+}\right)$is the combination form with respect to $\beta_{i}-\alpha_{i}(i=1,2, \cdots, n)$.

Proof. Let $\nu_{i}=\xi_{i}-\alpha_{i}, i=1,2, \cdots, n$. Then ν_{i} has the uniform distribution with the support $\left(0, \ell_{i}\right), \ell_{i}=\beta_{i}-\alpha_{i}, i=1,2, \cdots, n$ and mutually independent property between their. By corollary 1 the sum $\sum_{i=1}^{n} \nu_{n}=\zeta_{n}-A_{n}$ has the density function $g_{n}^{*}(u)$ with support $\left(0, L_{n}\right)$, where $L_{n}=\sum_{i=1}^{n} \ell_{i}$. Letting $x=$ $u-A_{n}$, the density function h_{n}^{*} has the support $\left(A_{n}, B_{n}\right)$, where $A_{n}=\sum_{i=1}^{n} \alpha_{i}$ and $B_{n}=\sum_{i=1}^{n} \beta_{i}$. By transformation method we obtain easily the result in theorem.

Corollary 2. Under the conditions of Theorem 3, the distribution function H_{n}^{*} of the sum ζ_{n} is

$$
\begin{equation*}
H_{n}^{*}(x)=\frac{1}{n!\prod_{i=1}^{n}\left(\beta_{j}-\alpha_{j}\right)} \sum_{j=1}^{\tau_{n}^{+}}(-1)^{\left\|\mathbf{w}_{n j}\right\|}\left(x+A_{n}-s_{j}\right)^{n} I_{\left(A_{n}, \infty\right)}(x) \tag{37}
\end{equation*}
$$

Proof. For any given x

$$
\begin{equation*}
H_{n}^{*}(x)=\int_{-\infty}^{x} h_{n}(u) d u \tag{38}
\end{equation*}
$$

Since $h_{n}(x)=0$ for $x \leq A_{n}$, the distribution function is

$$
\begin{equation*}
H_{n}^{*}(x)=\int_{A_{n}}^{x} h_{n}(u) d u I_{\left(A_{n}, B_{n}\right)}(x)+I_{\left[B_{n}, \infty\right)}(x) \tag{39}
\end{equation*}
$$

But if $x \geq B_{n}$, then $\tau_{n}^{+}=2^{n}$. Since

$$
\begin{equation*}
\frac{1}{n!\prod_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)} \sum_{j=1}^{2^{n}}(-1)^{\left\|\mathbf{w}_{n j}\right\|}\left(x+A_{n}-s_{j}\right)^{n}=1 \tag{40}
\end{equation*}
$$

so we have

$$
\begin{equation*}
H_{n}^{*}(x)=\frac{1}{n!\prod_{i=1}^{n}\left(\beta_{i}-\alpha_{i}\right)} \sum_{j=1}^{\tau_{n}^{+}}(-1)^{\left\|\mathbf{w}_{n j}\right\|}\left(x+A_{n}-s_{j}\right)^{n} I_{\left(A_{n}, B_{n}\right)}(x)+I_{\left[B_{n}, \infty\right)} \tag{41}
\end{equation*}
$$

Thus the proof is complete.

References

1. R. Balian, Entropy, a Protean Concept, Poincaré Seminar 2 (2003), 119-145.
2. Y. Chow and S. Y. Huang, A Characterization of the Uniform Distribution via Moments of n-fold Convolution Modulo One, Sankhya : Indian Journal of Statistics, 61 (A) (1999), 148-151.
3. W. Feller, An introduction to probability theory and its applications, Vol. I and II, John Wiley \& Sons, 1957 and 1966.
4. F. Killmann and E. v. Collani, A Note on the Convolution of the Uniform and Related Distributions and Their Use in Quality Control, Economic Quality Control, 16 (1) (2001), 17-41.
5. C. H. v. Lanzenauer and W. N. Lundberg, The n-fold convolution of a mixed density and mass function, International Actuarial Association, 8 (1) (1974), 91-103.
6. E. Lukacs, Stochastic Convergence, Academic Press, 1975.
7. N. D. Pril, Recursions for Convolutions of Arithmetic Distributions, Astin Bulletin, 15 (2) (1985), 135-139.
8. A. Rényi, Probability Theory, North-Holland, Amsterdam, 1970.
9. B. Sundt, Some recursions for moments of n-fold convolutions, Insurance: Mathematics and Economics, 33 (3) (2003), 479-486.

Jong Seong Kang is a professor at Chungnam National University.
College of Pharmacy, Chungnam National University, Daejeon, 305-764, Korea.

e-mail: kangjss@cnu.ac.kr

Sung Lai Kim is a professor at Chungnam National University.
Department of Mathematics, Chungnam National University, Daejeon, 305-764, Korea. e-mail: slkim@cnu.ac.kr

Yang Hee Kim is a Ph.D in Mathematics.
Department of Mathematics Education, Chungnam National University, Daejeon, 305-764, Korea.
e-mail: mathkyh@cnu.ac.kr
Yu Seon Jang is a research professor at Chungnam National University.
Drug Development Research Institute, Chungnam National University, Daejeon, 305-764, Korea.
e-mail: ysjang@cnu.ac.kr

[^0]: Received May 10, 2010. Accepted July 5, 2010. *Corresponding author.
 ${ }^{\dagger}$ This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (20090093815).

