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GENERALIZED CONVOLUTION OF UNIFORM

DISTRIBUTIONS†

JONG SEONG KANG, SUNG LAI KIM, YANG HEE KIM AND YU SEON JANG∗

Abstract. we investigate the n-fold convolution of the uniform distribu-
tions. First, we are concerned with the explicit distribution function of
the partial sum ζn when the random variables are independent and has
identically uniform distribution, next, we determine the n-fold convolution
distribution of ζn when the identically distributed condition is not satisfied.
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1. Introduction

The sum ζn of n mutually independent random variables ξ1, ξ2, · · · , ξn plays
an important role in many fields ; information theory, insurance mathematics,
economics, engineering and medical applications, etc. [2,4,5,7,9]. In information
theory, entropy is the measure of the amount of information that is missing
before reception and is sometimes referred to as Shannon entropy [1,4]. Shannon
entropy is a broad and general concept which finds applications in information
theory. It was originally devised by Claude Shannon in 1948 to study the amount
of information in a transmitted message [1]. The entropy of the probability
density p(x) is defined by

∫ ∞

−∞
p(x) log[p(x)]−1dx. (1)

Uniform distribution has maximum entropy among all distributions of continu-
ous type with finite support [4].
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Mathematically, a convolution is defined as the integral over all space of one
function f1 at u times another function f2 at x−u. The integration is taken over
the variable u, typically from minus infinity to infinity over all the dimensions.
So the convolution is a function f1 ∗ f2 of a new variable x, as shown in the
following equation

f1 ∗ f2(x) =
∫ ∞

−∞
f1(u)f2(x− u)du. (2)

Let F1 and F2 be two distribution functions, then

G∗
2(x) =

∫ ∞

−∞
F1(x− u)dF2(u). (3)

is also a distribution function. Equation (3) defines an associative and commu-
tative operation, and the result distribution is called the convolution of F1 and
F2, and we write the equation (3) in the symbolic form G∗

2 = F1 ∗ F2. If one
of the F1 and F2 is absolutely continuous, then G∗

2 is also absolutely continuous
and if we let F ′

1 (x) = f1(x) and F ′
2 (x) = f2(x), then G∗ ′

2 (x) = f1 ∗ f2(x), and
write also g∗2 = f1 ∗ f2.

Let Fi and fi denote the distribution function and the density function of
the summand ξi, i = 1, 2, · · · , n and let G∗

n be the distribution function of the
partial sum ζn = ξ1 + · · · + ξn. Then the G∗

n(x) equals the n-fold convolution
F1 ∗ F2 ∗ · · · ∗ Fn(x) and g∗n(x) = f1 ∗ f2 · · · ∗ fn(x).

In this paper, we investigate the n-fold convolution of the uniform distribu-
tions. First, we are concerned with the explicit distribution function of ζn when
the random variables are independent and has identically uniform distribution,
next, we determine the n-fold convolution distribution of ζn when the identically
distributed condition is not satisfied.

2. When ξ1, ξ2, · · · , ξn are independent and identically distributed

Let ξ1, ξ2, · · · , ξn be independent and identically distributed random variables
with the common distribution function F and probability density function f .
Then the distribution function of the sum ζn is the n-fold convolution of itself
F such as

Fn∗(x) = F (n−1)∗ ∗ F (x) (n ≥ 2) (4)

where F 1∗(x) = F (x) and its probability density function is

fn∗(x) = f (n−1)∗ ∗ f(x) (n ≥ 2) (5)

where f1∗(x) = f(x).

Suppose that the random variables ξ1, ξ2, · · · , ξn have the uniform distribution
on (α, β), β > α, that is, the common probability density function is given by

f(x) =
1

β − α
I(α,β)(x), (6)
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where IU (x) is 1 for x ∈ U and 0 otherwise. Then the sum ζ2 = ξ1 + ξ2 have a
symmetric triangle distribution and its density function is

f2∗(x) =
x− 2α

(β − α)2
I(2α,α+β)(x) +

2β − x

(β − α)2
I(α+β,2β)(x). (7)

By Renyi [8] the density function of the sum of n mutually independent random
variables with uniform distribution on (−1, 1) is

1

2

[n+u
2 ]∑

j=0

(−1)j
n

j!(n− j)!

(
n+ u

2
− j

)n−1

I(−n,n)(u), (8)

where [u] is the largest integer less than or equal to u. Taking x = (−α+β)u/2+
(α+β)n/2, it is possible to gain the probability density function fn∗ of the sum
ζn as following ;

fn∗(x) =
1

β − α

τ∑

j=0

(−1)j
n

j!(n− j)!

(
x− nα

β − α
− j

)n−1

I(nα,nβ)(x), (9)

where τ is a function of n, x, α and β which is the largest integer less than or
equal to (x− nα)/(β − α). The distribution function of ζn is obtained by

Fn∗(x) =
∫ x

0

fn∗(t)dtI(nα,nβ)(x) + I[nβ,∞)(x). (10)

So we have the following theorem.

Theorem 1. The distribution function of the sum of n mutually independent
random variables with uniform distribution on (α, β) is

Fn∗(x) =
τ∑

j=0

(−1)j
1

j!(n− j)!

(
x− nα

β − α
− j

)n

I(nα,nβ)(x) + I[nβ,∞)(x), (11)

where τ is a function of n, x, α and β which is the largest integer less than or
equal to (x− nα)/(β − α).

Proof. The proof follows immediately from the equations (9) and (10). ¤

3. When ξ1, ξ2, · · · , ξn are independent but not identically distributed

Let ξ1, ξ2, · · · , ξn be independent uniformly distributed random variables with
ξi ∼ U(αi, βi), βi > αi, i = 1, 2, · · · , n and let Fi and fi the distribution function
and the density function of ξi, i = 1, 2, · · · , n, respectively. Then the random
variable ξi−αi has the uniform distribution on (0, `i), `i = βi−αi, i = 1, 2, · · · , n
and independent property. We determine the explicit form of the distribution
of the partial sum ζn = ξ1 + · · ·+ ξn throughout the distribution of ζn − (α1 +
α2 + · · ·+ αn).
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Let Wn be the set of all n-tuples of elements of {0, 1} with the standard
definitions of addition and scalar multiplication. Then Wn is a subspace of the
n-dimensional Euclidean vector space Rn. Let Sp be the set of all scalar products
between wn ∈ Wn and tn ∈ Rn, that is,

Sp = {< wn, tn > | wn ∈ Wn, tn ∈ Rn} , (12)

where< ·, · > is the scalar product on Rn and let for any given αi, βi, i =
1, 2, · · · , n

S = {w1`1 + w2`2 + · · ·+ wn`n | wi ∈ {0, 1} , i = 1, 2, · · · , n} ⊂ Sp, (13)

where `i = βi − αi, i = 1, 2, · · · , n. Then S has the 2n values 0, `1, `2, · · · , `1 +
· · ·+ `n. We obtain the rearrangement set S = {sn1, sn2, · · · , sn2n} with sn1(=
0) ≤ sn2 ≤ · · · ≤ sn2n(= `1 + `2 + · · ·+ `n, say Ln)

For any x ∈ R1 we define

τ+n = max {j | x− snj > 0 and snj ∈ S for j = 1, 2, · · · , 2n} . (14)

Then the τ+n is the number of index j with x − snj > 0, j = 1, 2, · · · , 2n. Now
we know that for any αi, βi, (βi − αi > 0, i = 1, 2, · · · , n) and index j, j =
1, 2, · · · , 2n there exist a vector wn = (w1, w2, · · · , wn) ∈ Wn such that

snj = w1`1 + w2`2 + · · ·+ wn`n (j = 1, 2, · · · , 2n). (15)

In this time, for any given index j we let wnj be the vector wn which is satisfied
the following condition

snj =< wn, (`1, · · · , `n) > (16)

where < ·, · > is the scalar product on Rn.

For example, If n = 2 and max {`1, `2} < x < `1 + `2(= L2), then

τ+2 = 3

w21 = (0, 0), w22 = (0, `2), w23 = (`1, 0) (if `2 < `1)

s21 = 0, s22 = min {`1, `2} , s23 = max {`1, `2}
(17)

and the distribution function G2(x) of ζ2 −A2 is

P (ζ2 −A2 ≤ x) =

∫ ∞

−∞
F1(x1 − x2)dF2(x2), (18)

where Fi is the distribution function of ξi − αi, i = 1, 2 and A2 = α1 + α2.
Thus we have the following lemma.

Lemma 1. Let the random variables ξ1, ξ2 be independent and uniformly dis-
tributed on (0, `i), `i > 0, i = 1, 2. Then the distribution function G∗

2 of the sum
ζ2 = ξ1 + ξ2 is

G∗
2(x) =

1

2`1`2

τ+
2∑

j=1

(−1)|| w2j || (x− sj)
2
I(0,L2)(x) + I[L2,∞)(x), (19)
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where τ+2 is defined by equation (14) and || · || is the norm of the vector.

Proof. The convolution G∗
2 of F1 and F2 is represented by

G∗
2(x) =

∫ ∫

x1+x2≤x

dF1(x1)dF2(x2). (20)

By integrating (20) we obtain

G∗
2(x) =





0, x < 0

1

2`1`2
x2, 0 ≤ x < m2

1

2`1`2

{
x2 − (x−m2)

2
}
, m2 ≤ x < M2

1− 1

2`1`2
(L2 − x)2, M2 ≤ x < L2

1, x ≥ L2

(21)

where m2 = min{`1, `2}, M2 = max{`1, `2}. Since

1− 1

2`1`2
(L2 − x)2 =

1

2`1`2

{
x2 − (x−m2)

2 − (x−M2)
2
}
, (22)

we know that for 0 < x < L2

G∗
2(x) =

1

2`1`2

τ+
2∑

j=1

(−1)||w2j || (x− sj)
2
I(0,L2)(x) (23)

which completes the proof. ¤

Lemma 2. Under the conditions of Lemma 1, the distribution function G∗
2 of

the sum ζ2 = ξ1 + ξ2 is

G∗
2(x) =

1

2`1`2

τ+
2∑

j=1

(−1)|| w2j || (x− sj)
2
I(0,∞)(x). (24)

Proof. If x ≥ L2, then the number τ+2 = 4. By equation (22) we have

G∗
2(x) =

1

2`1`2

4∑

j=1

(−1)||w2j || (x− sj)
2

=

∫ `2

0

∫ `1

0

f1(x1)f2(x2)dx1dx2 = 1.

(25)

Hence from Lemma 1 we obtain the result in lemma. ¤
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Theorem 2. Let the random variables ξ1, ξ2, · · · , ξn be independent and uni-
formly distributed on (0, `i), `i > 0, i = 1, 2, · · · , n. Then the distribution func-
tion G∗

n of the sum ζn = ξ1 + ξ2 + · · ·+ ξn is

G∗
n(x) =

1

n!
∏n

i=1 `i

τ+
n∑

j=1

(−1)|| wnj || (x− sj)
n
I(0,∞)(x), (26)

where τ+n is defined by equation (14) and sj ( j = 1, 2, · · · , τ+n ) is the combination
form with respect to `i (i = 1, 2, · · · , n).
Proof. It is trivial for x ≤ 0. If x ≥ Ln(= `1 + · · · + `n, n ≥ 2), then the
distribution function G∗

n(x) is the integral of n-fold convolution of the density
functions f1, f2, · · · and fn over R1 ;

G∗
k+1(x) =

∫

R1

f1 ∗ f2 ∗ · · · ∗ fn(u)du. (27)

Since f1 ∗ f2 ∗ · · · ∗ fn is a density function, the distribution function G∗
n(x) is

equal to 1.
For 0 < x < Ln the proof will be performed by mathematical induction

with respect to n. For n = 2, we obtain the result in lemma 2. Suppose that
the equation (26) is true for any positive integer k (k ≤ n) and g∗k denote the
density function of ζk. Then the distribution function G∗

k+1 of ζk+1 is obtained
by convolution of G∗

k and Fk such as

G∗
k+1(x) =

∫

R1

G∗
k(x− xk+1)dFk+1(xk+1) (0 < x < Lk+1) (28)

and

g∗k+1(x) =
d

dx
G∗

k+1(x) (0 < x < Lk+1). (29)

Since

G∗
k+1(x) =

1

`k+1

∫ `k+1

0

G∗
k(x− xk+1)dxk+1, (30)

the density function of ζk+1 is

g∗k+1(x) =
1

`k+1

[
G∗

k(x)−G∗
k(x− `k+1)

]

=
1

k!
∏k+1

i=1 `i




τ+
k∑

j=1

(−1)|| wkj || (x− skj)
k − (x− `k+1 − skj)

k




=
1

k!
∏k+1

i=1 `i

τ+
k+1∑

j=1

(−1)|| w(k+1)j || (x− s(k+1)j

)k
(0 < x < Lk+1).

(31)
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and 0 otherwise. Thus we have the distribution function

G∗
k+1(x) =

1

(k + 1)!
∏k+1

i=1 `i

τ+
k+1∑

j=1

(−1)|| w(k+1)j || (x− s(k+1)j

)k+1
I(0,Lk+1)

(32)

which completes the proof. ¤

Corollary 1. Under the conditions of Theorem 2, the density function g∗n of the
sum ζn is

g∗n(x) =
1

(n− 1)!
∏n

i=1 `i

τ+
n∑

j=1

(−1)|| wnj || (x− sj)
n−1

I(0,Ln)(x), (33)

where Ln =
∑n

i=1 `i.

Proof. Since for 0 < x < Ln

G∗
n(x) =

1

n!
∏n

i=1 `i

τ+
n∑

j=1

(−1)|| wnj || (x− sj)
n

(34)

and G∗ ′
n (x) = gn(x), the density function is

g∗n(x) =
1

(n− 1)!
∏n

i=1 `i

τ+
n∑

j=1

(−1)|| wnj || (x− sj)
n−1

. (35)

And also since G∗
n(x) = 1 for x ≥ Ln, we obtain the result in corollary. ¤

Theorem 3. Let the random variables ξ1, ξ2, · · · , ξn be independent and uni-
formly distributed on (αi, βi) with βi − αi > 0, i = 1, 2, · · · , n. Then the density
function h∗

n of the sum ζn = ξ1 + ξ2 + · · ·+ ξn is

h∗
n(x) =

1

(n− 1)!
∏n

i=1(βi − αi)

τ+
n∑

j=1

(−1)|| wnj || (x+An − sj)
n−1

I(An,Bn)(x),

(36)
where An =

∑n
i=1 αi, Bn =

∑n
i=1 βi and sj ( j = 1, 2, · · · , τ+n ) is the combina-

tion form with respect to βi − αi (i = 1, 2, · · · , n).
Proof. Let νi = ξi − αi, i = 1, 2, · · · , n. Then νi has the uniform distribution
with the support (0, `i), `i = βi − αi, i = 1, 2, · · · , n and mutually independent
property between their. By corollary 1 the sum

∑n
i=1 νn = ζn − An has the

density function g∗n(u) with support (0, Ln), where Ln =
∑n

i=1 `i. Letting x =
u−An, the density function h∗

n has the support (An, Bn), where An =
∑n

i=1 αi

and Bn =
∑n

i=1 βi. By transformation method we obtain easily the result in
theorem. ¤
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Corollary 2. Under the conditions of Theorem 3, the distribution function H∗
n

of the sum ζn is

H∗
n(x) =

1

n!
∏n

i=1(βj − αj)

τ+
n∑

j=1

(−1)|| wnj || (x+An − sj)
n
I(An,∞)(x). (37)

Proof. For any given x

H∗
n(x) =

∫ x

−∞
hn(u)du. (38)

Since hn(x) = 0 for x ≤ An, the distribution function is

H∗
n(x) =

∫ x

An

hn(u)duI(An,Bn)(x) + I[Bn,∞)(x). (39)

But if x ≥ Bn, then τ+n = 2n. Since

1

n!
∏n

i=1(βi − αi)

2n∑

j=1

(−1)||wnj || (x+An − sj)
n
= 1, (40)

so we have

H∗
n(x) =

1

n!
∏n

i=1(βi − αi)

τ+
n∑

j=1

(−1)||wnj || (x+An − sj)
n
I(An,Bn)(x) + I[Bn,∞).

(41)
Thus the proof is complete. ¤
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8. A. Rényi, Probability Theory, North-Holland, Amsterdam, 1970.
9. B. Sundt, Some recursions for moments of n-fold convolutions, Insurance: Mathematics

and Economics, 33 (3) (2003), 479-486.

Jong Seong Kang is a professor at Chungnam National University.

College of Pharmacy, Chungnam National University, Daejeon, 305-764, Korea.



Generalized Convolution of Uniform Distributions 1581

e-mail: kangjss@cnu.ac.kr

Sung Lai Kim is a professor at Chungnam National University.

Department of Mathematics, Chungnam National University, Daejeon, 305-764, Korea.
e-mail: slkim@cnu.ac.kr

Yang Hee Kim is a Ph.D in Mathematics.

Department of Mathematics Education, Chungnam National University, Daejeon, 305-764,
Korea.
e-mail: mathkyh@cnu.ac.kr

Yu Seon Jang is a research professor at Chungnam National University.

Drug Development Research Institute, Chungnam National University, Daejeon, 305-764,
Korea.
e-mail: ysjang@cnu.ac.kr


