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PROPERTY (Dk) IN BANACH SPACES†

KYUGEUN CHO* AND CHONGSUNG LEE

Abstract. In this paper, we define property (Dk) and get the following
strict implications.

(UC) ⇒ (D2) ⇒ (D3) ⇒ · · · ⇒ (D∞) ⇒ (BS).

AMS Mathematics Subject Classification : 46B20
Key words and phrases : property (Dk), Banach-Saks property, uniform
convexity

1. Introduction

Let (X, ‖ · ‖) be a real Banach space and X∗ the dual space of X. By BX , we
denote the closed unit ball of X. For a Banach space X with a usual unit basis
(en), if x =

∑∞
n=1 anen, we define the support of x, supp(x) = {n : an 6= 0}. For

x, y ∈ X, we write x < y for max supp(x) < min supp(y).
(X, ‖ · ‖) is said to be uniformly convex (UC) if for all ε > 0, there exists a

δ > 0 such that for x, y ∈ BX with ‖x− y‖ ≥ ε,∥∥∥∥
1

2
(x+ y)

∥∥∥∥ ≤ 1− δ.

A Banach space is said to have Banach-Saks property (BS) if any bounded se-
quence in the space admits a subsequence whose arithmetic means converges
in norm. S. Kakutani [4] showed that Uniform convexity implies Banach-Saks
property. And T. Nishiura and D. Waterman [5] proved that Banach-Saks prop-
erty implies reflexivity in Banach spaces. A Banach space X is said to have
weak Banach-Saks property if every weakly null sequence (xn) in X admits a
subsequence whose arithmetic means converges in norm. It is easy to see that
Banach-Saks property implies weak Banach-Saks property. Since every bounded
sequence in reflexive Banach spaces has weakly convergent subsequence, weak
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Banach-Saks property is equivalent to Banach-Saks property in reflexive Banach
spaces.

2. Main Results

We start with the following definition.

Definition 1. A Banach space X is said to have property (Dk), where k ≥ 2
if it is reflexive and there exists a number α, 0 < α < 1, such that for a weakly
null sequence (xn) in BX , there exist n1 < n2 < · · · < nk with

∥∥∥∥∥
1

k

k∑

i=1

(−1)i+1xni

∥∥∥∥∥ < α.

It is easy to see that property (Dk) implies property (Dk+1).

Proposition 2. If X has property (Dk), then it has property (Dk+1).

Proof. Suppose that X has property (Dk). Then X is reflexive and there exists
a number α, 0 < α < 1, such that for a weakly null sequence (xn) in BX , there
exist n1 < n2 < · · · < nk with∥∥∥∥∥

1

k

k∑

i=1

(−1)i+1xni

∥∥∥∥∥ < α.

Let nk+1 = nk + 1. Then∥∥∥∥∥
1

k + 1

k+1∑

i=1

(−1)i+1xni

∥∥∥∥∥ ≤ k

k + 1

∥∥∥∥∥
1

k

k∑

i=1

(−1)i+1xni

∥∥∥∥∥+
1

k + 1
‖xnk+1

‖

≤ k

k + 1
α+

1

k + 1
=

1

k + 1
(kα+ 1) < 1.

Letting β = 1
k+1 (kα+ 1), we get the result. ¤

The following Proposition 3 can be found in [2].

Proposition 3. If X is uniformly convex, then it has property (D2). The con-
verse dose not hold.

The following Definition 4 and Lemma 5 can be found in [1].
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Definition 4. A Banach spaceX is said to have alternate signs weak Banach−
Saks property if every weakly null sequence (xn) in X there exists a subsequence
(x′

n) of (xn) and a sequence (εn) of {±1} such that (1/n)
∑n

i=1 εix
′
i converges in

norm.

Lemma 5. A Banach space has weak Banach-Saks property if and only if it has
alternate signs weak Banach-Saks property.

Banach spaces with property (Dk) have alternate Banach-Saks property.

Proposition 6. If X has property (Dk), it has alternate signs weak Banach-Saks
property.

Proof. Suppose that X has property (Dk). Then there exists 0 < α < 1 such
that for all weakly null sequence (xn) in BX , there exist n1 < n2 < · · · < nk

with ∥∥∥∥∥
1

k

k∑

i=1

(−1)i+1xni

∥∥∥∥∥ < α.

Suppose (xn) is a weakly null sequence in X. Without loss of generality, we may
assume that ‖xn‖ ≤ 1. Then there exist n1 < n2 < · · · < nk such that

∥∥∥∥∥
1

k

k∑

i=1

(−1)i+1xni

∥∥∥∥∥ < α.

Since (xn)n>nk
is weakly null and ‖xn‖ ≤ 1 for n > nk, there exist (nk <)nk+1 <

nk+2 < · · · < n2k such that
∥∥∥∥∥
1

k

2k∑

i=k+1

(−1)i+1xni

∥∥∥∥∥ < α.

Continue this process, we obtain a subsequence (xnm) for which given any k ∈ N∥∥∥∥∥∥
1

k

(j+1)k∑

i=jk+1

(−1)i+1xni

∥∥∥∥∥∥
< α,

for all j ∈ N ∪ {0}. Now, using Kakutani’s result [4], we conclude that there
exists a subsequence (x′

n) of (xn) such that∥∥∥∥∥
1

n

n∑

i=1

(−1)i+1x′
i

∥∥∥∥∥ → 0 as n → ∞.

This means that X has alternate weak Banach-Saks property. ¤
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By Lemma 5 and Proposition 6, if X has property (Dk) then X has weak
Banach-Saks property. Since weak Banach-Saks property is equivalent to Bana-
ch-Saks property in reflexive Banach spaces, we get the following.

Corollary 7. If X has property (Dk), then it has Banach-Saks property.

By Proposition 2, Proposition 3 and Corollary 7, we get the following impli-
cations.

(UC) ⇒ (D2) ⇒ (D3) ⇒ · · · ⇒ (D∞) ⇒ (BS).

We will now show that the implications are not reversible. The following
Example 8 can be found in [6].

Example 8. For x = (an) ∈ l2, we define a norm ‖x‖(s) by

‖x‖(s) =

 sup

n1<n2<···<ns

(
s∑

i=1

|ani |
)2

+
∑

n6=n1,n2··· ,ns

|an|2



1
2

.

Then ‖x‖2 ≤ ‖x‖(s) ≤
√
s‖x‖2. Let Xs = (l2, ‖ · ‖(s)).

The following Lemma 9 can be found in [3].

Lemma 9. If X is a Banach space with basis (en) and (xn) is a weakly null
sequence in X, then for all ε > 0 there exists a subsequence (xni of (xn) and
block sequence (ui) of (en) such that ‖xni − ui‖ < ε

2i+1 .

We need the following lemma.

Lemma 10. If x1, x2, · · · , xk, xk+1 ∈ BXk
and x1 < x2 < · · · < xk < xk+1

then ∥∥∥∥∥
k+1∑

i=1

(−1)i+1xi

∥∥∥∥∥
(k)

≤
√
k2 + 1.
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Proof. This is proved by straightforward computation using the following in-
equality

(n− 1)

n∑

i=1

a2i ≥ 2
∑

1≤i<j≤n

aiaj ,

where (ai) is a real sequence. For simplicity, we give the proof in case k = 2.
Suppose that x = (an), y = (bn), z = (cn) ∈ BX2

and x < y < z. Without loss
of generality, it suffices to consider the following two cases.
Case 1: ‖x− y + z‖2(2) = supn1,n2

(|an1
|+ |an2

|)2 +∑
n 6=n1,n2

|an|2 +
∑

n |bn|2 +∑
n |cn|2.

‖x− y + z‖2(2) = sup
n1,n2

(|an1 |+ |an2 |)2 +
∑

n6=n1,n2

|an|2 +
∑
n

|bn|2 +
∑
n

|cn|2

≤ ‖x‖2(2) + ‖y‖22 + ‖z‖22 ≤ ‖x‖2(2) + ‖y‖2(2) + ‖z‖2(2) = 3.

Case 2: ‖x− y+ z‖2(2) = supn1,n2
(|an1 |+ |bn2 |)2 +

∑
n 6=n1

|an|2 +
∑

n6=n2
|bn|2 +∑

n |cn|2.

‖x− y + z‖2(2) = sup
n1,n2

(|an1 |+ |bn2 |)2 +
∑

n 6=n1

|an|2 +
∑

n6=n2

|bn|2 +
∑
n

|cn|2

≤ 2 sup
n1,n2

(|an1 |2 + |bn2 |2
)
+

∑

n 6=n1

|an|2 +
∑

n 6=n2

|bn|2 +
∑
n

|cn|2

≤ sup
n1,n2

(|an1 |2 + |bn2 |2
)
+
∑
n

|an|2 +
∑
n

|bn|2 +
∑
n

|cn|2

≤ ‖x‖22 + ‖y‖22 + ‖x‖22 + ‖y‖22 + ‖z‖22 = 5

This implies that ‖x− y + z‖(2) ≤
√
5. ¤

By the above lemmas, we get the following.

Proposition 11. Property (Dk+1) does not imply Property (Dk)

Proof. Since the space Xk is isomorphic to l2, unit vector basis (en) is weakly
null in Xk. But ∥∥∥∥∥

k∑

i=1

(−1)i+1eni

∥∥∥∥∥
(k)

= k

for all choice of ni. This means that Xk does not have property (Dk).
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Let (xn) be a weak null sequence in BXk
. By Lemma 9, for all ε > 0 there

exists a subsequence (xni
) of (xn) and block sequence (ui) of (en) such that

‖xni − ui‖ < ε
2i+1 . We note that

‖
k+1∑

i=1

(−1)i+1ui‖(k) ≤
√
k2 + 1,

by Lemma 10. For some large i1 < i2 < · · · < ik < ik+1,

‖xnij
− uij‖ <

1

k + 1

(√
k2 + 2−

√
k2 + 1

)
,

where j = 1, 2, . . . , k + 1. Then we have∥∥∥∥∥∥

k+1∑

j=1

(−1)i+1xnij

∥∥∥∥∥∥
≤

k+1∑

j=1

∥∥∥xnij
− uij

∥∥∥+

∥∥∥∥∥∥

k+1∑

j=1

(−1)i+1unj

∥∥∥∥∥∥
≤

√
k2 + 2.

Let α =
√
k2+2
k+1 . Then α < 1 and this leads that the space Xk has property

(Dk+1). ¤

To get that the following implications hold and strict, the remaining proof is
that Banach-Saks property does not imply Property (D∞).

(UC) ⇒ (D2) ⇒ (D3) ⇒ · · · ⇒ (D∞) ⇒ (BS).

Proposition 12. Banach-Saks property does not imply Property (D∞).

Proof. Consider
(∏

s≥2 Cs

)
l2
. Then

(∏
s≥2 Cs

)
l2
has Banach-Saks property [6].

Let k ∈ N. If x(n) = (0, 0, · · · , 0, en, 0, · · · ) where usual unit vector en in

k-th coordinate is only nonzero element of x(n), then x(n) ∈
(∏

s≥2 Cs

)
l2

and

‖x(n)‖(∏
s≥2

Cs

)
l2

= 1. We note that x(n) is weakly null in
(∏

s≥2 Cs

)
l2
. But

∥∥∥∥∥∥

k∑

j=1

(−1)i+1x(ni)

∥∥∥∥∥∥(∏
s≥2

Cs

)
l2

=

∥∥∥∥∥∥

k∑

j=1

(−1)i+1eni

∥∥∥∥∥∥
(k)

= k.

This means that
(∏

s≥2 Cs

)
l2

has no property (D∞). ¤
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