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Abstract. In this paper, we study convergence of both two-stage mul-
tisplitting method with preweighting and ILU-multisplitting method with
preweighting for solving a linear system.
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1. Introduction

In this paper, we consider two-stage multisplitting and ILU-multisplitting
methods with preweighting for solving a linear system of the form

Ax = b, x, b ∈ Rn, (1)

where A ∈ Rn×n is a monotone matrix or an H-matrix.
For a vector x ∈ Rn, x ≥ 0 (x > 0) denotes that all components of x are

nonnegative (positive), and |x| denotes the vector whose components are the
absolute values of the corresponding components of x. For two vectors x, y ∈ Rn,
x ≥ y (x > y) means that x − y ≥ 0 (x − y > 0). These definitions carry
immediately over to matrices. For a square matrix A, diag(A) denotes a diagonal
matrix whose diagonal part coincides with the diagonal part of A. Let ρ(A)
denote the spectral radius of a square matrix A.

A matrix A = (aij) ∈ Rn×n is called a Z-matrix if aij ≤ 0 for i 6= j. A
matrix A = (aij) ∈ Rn×n is called monotone if A is nonsingular and A−1 ≥ 0.
A matrix A = (aij) ∈ Rn×n is called an M -matrix if it is a monotone Z-matrix.
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The comparison matrix 〈A〉 = (αij) of a matrix A = (aij) is defined by

αij =

{
|aij | if i = j

−|aij | if i 6= j
.

A matrix A is called an H-matrix if 〈A〉 is an M -matrix.
A representation A = M −N is called a splitting of A if M is nonsingular. A

splitting A = M −N is called regular if M−1 ≥ 0 and N ≥ 0, the first type weak
regular if M−1 ≥ 0 and M−1N ≥ 0, and the second type weak regular if M−1 ≥ 0
and NM−1 ≥ 0. A splitting A = M −N is called convergent if ρ(M−1N) < 1.
It is well known that if A = M − N is the first type weak regular splitting of
A, then ρ(M−1N) < 1 if and only if A−1 ≥ 0 [10]. A splitting A = M − N is
called an H-compatible splitting of A if 〈A〉 = 〈M〉 − |N |. It was shown in [5]
that if A is an H-matrix and A = M − N is an H-compatible splitting of A,
then ρ(M−1N) < 1. A collection of triples (Mk, Nk, Ek), k = 1, 2, . . . , `, is called
a multisplitting of A if A = Mk −Nk is a splitting of A for k = 1, 2, . . . , `, and

E′
ks are nonnegative diagonal matrices such that

∑`
k=1 Ek = I.

This paper is organized as follows. In Section 2, we study convergence of two-
stage multisplitting methods with preweighting for solving the linear system
(1). In Section 3, we study convergence of ILU-multisplitting method with
preweighting for solving the linear system (1).

2. Two-stage multisplitting method with preweighting

In this section, we study convergence of two-stage multisplitting method with
preweighting. Let (Mk, Nk, Ek), k = 1, 2, · · · , `, be a multisplitting of A. Given
a parameter λ ∈ [0, 1] and an initial vector x0, the corresponding multisplitting
iteration method (depending on λ) for solving the linear system (1) is [8]

xi+1 = Hλxi +Gλb

= xi +Gλ(b−Axi), i = 0, 1, 2, · · · , (2)

where

Gλ =
∑̀

k=1

Ek
λMk

−1Ek
1−λ and Hλ = I −GλA. (3)

Here, Ek
λ denotes the diagonal matrix obtained from Ek by replacing all diag-

onal entries by their λ-th power when λ 6= 0, and Ek
0 := I.

The case λ = 1 is called the multisplitting method with postweighting which is
usually called the multisplitting method and has been extensively studied in the
literature, see [2, 3, 4, 7, 9, 11, 13, 14]. The case λ = 0 is called the multisplitting
method with preweighting. In certain situations, it was shown that ρ(Hλ) is
an increasing function of λ, which means that preweighting technique yields the
fastest method [12].

If λ = 0 in (3), then H0 = I − ∑`
k=1 Mk

−1EkA is an iteration matrix for
the multisplitting method with preweighting. If λ = 1 in (3), then H1 =
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I − ∑`
k=1 EkMk

−1A is an iteration matrix for the multisplitting method with
postweighting. By simple calculation, one obtains

H0
T = AT

(
I −

∑̀

k=1

Ek(Mk
T )−1AT

)
(AT )−1,

I −
∑̀

k=1

Ek(Mk
T )−1AT =

∑̀

k=1

Ek(Mk
T )−1Nk

T .

Let Ĥ1 =
∑`

k=1 Ek

(
Mk

T
)−1

Nk
T . Then it can be seen that H0

T is similar to

Ĥ1. It follows that

ρ(H0) = ρ(H0
T ) = ρ(Ĥ1).

Notice that Ĥ1 is an iteration matrix for the multisplitting method correspond-
ing to a multisplitting (Mk

T , Nk
T , Ek), k = 1, 2, · · · , `, of AT . Hence, conver-

gence results for multisplitting method with postweighting carry over to those
for multisplitting method with preweighitng. In other words,

ρ(H0) < 1 if and only if ρ(Ĥ1) < 1.

The multisplitting method with preweighting associated with a multisplitting
(Mk, Nk, Ek), k = 1, 2, · · · , `, of A for solving the linear system (1) is as follows:

Algorithm 1: Multisplitting method with preweighting
Given an initial vector x0

For i = 0, 1, . . . , until convergence
For k = 1 to ` {parallel execution}

Mkyk = Ek(b−Axi)

xi+1 = xi +
∑`

k=1 yk

The big advantage of Algorithm 1 is that the loop k can be executed com-
pletely in parallel by different processors. When the linear systems in Algorithm
1 are also solved iteratively in each processor using the splittings Mk = Fk−Gk,
one obtains the following two-stage multisplitting method with preweighting.

Algorithm 2: Two-stage multisplitting method with preweighting
Given an initial vector x0

For i = 0, 1, . . . , until convergence
For k = 1 to ` {parallel execution}

yk,0 = xi−1

For j = 1 to s
Fkyk,j = Gkyk,j−1 + Ek(b−Axi)

xi+1 = xi +
∑`

k=1 yk,s
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Now we further consider two-stage multisplitting method with preweighting
(Algorothm 2). For k = 1, 2, · · · , `, let

Tk =
(
Fk

−1Gk

)p
+

p−1∑

j=0

(
Fk

−1Gk

)j
Fk

−1Nk,

Pk =

p−1∑

j=0

(
Fk

−1Gk

)j
Fk

−1 =
(
I − (Fk

−1Gk)
p
)
Mk

−1.

If ρ(Fk
−1Gk) < 1 or ρ(Tk) < 1 for k = 1, 2, · · · , `, then

A = Bk −BkTk,

where Bk = Pk
−1 = Mk

(
I − (Fk

−1Gk)
p
)−1

. Hence, two-stage multisplitting
method with preweighting (Algorithm 2) can be written as

xi+1 = H0xi +G0b, i = 0, 1, 2 . . . ,

where

G0 =
∑̀

k=1

Bk
−1Ek and H0 = I −G0A = I −

∑̀

k=1

Bk
−1EkA. (4)

Form equation (4), one obtains

H0
T = I −AT

∑̀

k=1

Ek(Bk
−1)T = AT

(
I −

∑̀

k=1

Ek(Bk
−1)TAT

)
A−T .

Let H̃1 = I −∑`
k=1 Ek(Bk

−1)TAT . Then H0
T is similar to H̃1. Hence,

ρ(H0) = ρ(H0
T ) = ρ(H̃1).

By simple calculation, one obtains

(Bk
−1)T =




p−1∑

j=0

(Fk
−1Gk)

jFk
−1




T

=

p−1∑

j=0

(Fk
−TGk

T )jFk
−T ,

H̃1 =
∑̀

k=1

Ek


(Fk

−TGk
T )p +

p−1∑

j=0

(Fk
−TGk

T )jFk
−TNk

T


 .

From these equalities, it can be seen that the matrix H̃1 is an iteration matrix of
two-stage multisplitting method corresponding to outer splittings AT = Mk

T −
Nk

T and inner splittings Mk
T = Fk

T −Gk
T for k = 1, 2, . . . , `.

The following theorem show the well known result for convergence of two-
stage multisplitting method with postweighting when A is a monotone matrix.
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Theorem 2.1 ([9]). Let A−1 ≥ 0, A = Mk −Nk be a regular splitting of A and
Mk = Fk − Gk be the first type weak regular splitting of Mk for k = 1, 2 . . . , `.
Then ρ(H1) < 1, where

H1 =
∑̀

k=1

EkTk and Tk = (Fk
−1Gk)

p +

p−1∑

j=0

(Fk
−1Gk)

jFk
−1Nk.

The following lemma provides a convergence result of two-stage multisplitting
method corresponding to outer splittings AT = Mk

T −Nk
T and inner splittings

Mk
T = Fk

T −Gk
T for k = 1, 2, . . . , `.

Lemma 2.2. Let A−1 ≥ 0, A = Mk − Nk be a regular splitting of A and
Mk = Fk −Gk be the second type weak regular splitting of Mk for k = 1, 2 . . . , `.
Then ρ(H̃1) < 1, where

H̃1 =
∑̀

k=1

Ek


(Fk

−TGk
T )p +

p−1∑

j=0

(Fk
−TGk

T )jFk
−TNk

T


 .

Proof. Since A = Mk − Nk is a regular splitting, we easily obtain that for
k = 1, 2, . . . , `,

AT = Mk
T −Nk

T , (Mk
T )−1 = (Mk

−1)T ≥ 0 and Nk
T ≥ 0.

Hence, AT = Mk
T −Nk

T is a regular splitting. Since Mk = Fk −Gk is the first
type weak regular splitting for k = 1, 2, . . . , `,

Mk
T = Fk

T −Gk
T , (Fk

T )−1 = (Fk
−1)T ≥ 0,

(Fk
T )−1Gk

T = (Fk
−1)TGk

T = (GkFk
−1)T ≥ 0.

Hence, Mk
T = Fk

T − Gk
T is the first type weak regular splitting. Notice that

H̃1 is an iteration matrix of two-stage multisplitting method corresponding to
outer splittings AT = Mk

T − Nk
T and inner splittings Mk

T = Fk
T − Gk

T for
k = 1, 2, . . . , `. From Theorem 2.1, ρ(H̃1) < 1. ¤

The following theorem provides a convergence result of two-stage multisplit-
ting method with preweighting when A is a monotone matrix.

Theorem 2.3. Let A−1 ≥ 0, A = Mk−Nk be a regular splitting of A and Mk =
Fk −Gk be the second type weak regular splitting of Mk for k = 1, 2 . . . , `. Then

ρ(H0) < 1, where H0 = I−∑`
k=1 Bk

−1EkA and Bk = Mk

(
I − (Fk

−1Gk)
p
)−1

.

Proof. Let H̃1 = I −∑`
k=1 Ek(Bk

−1)TAT . Since H̃1 is similar to H0
T , ρ(H̃1) =

ρ(H0). From Lemma 2.2, ρ(H̃1) < 1. Therefore, ρ(H0) < 1. ¤

Note that if A = M −N is a regular splitting, then A = M −N is the second
type weak regular splitting. Hence, the following corollary is obtained.
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Corollary 2.4. Let A−1 ≥ 0. If A = Mk −Nk and Mk = Fk −Gk are regular
splittings for k = 1, 2 . . . , `, then ρ(H0) < 1, where

H0 = I −
∑̀

k=1

Bk
−1EkA and Bk = Mk

(
I − (Fk

−1Gk)
p
)−1

.

The following theorem show the well known result for convergence of two-
stage multisplitting method with postweighting when A is an H-matrix.

Theorem 2.5 ([1]). Let A be an H-matrix. If A = Mk−Nk and Mk = Fk−Gk

are H-compatible splittings for k = 1, 2 . . . , `, then ρ(H1) < 1, where

H1 =
∑̀

k=1

EkTk and Tk = (Fk
−1Gk)

p +

p−1∑

j=0

(Fk
−1Gk)

jFk
−1Nk.

Lemma 2.6. Let A be an H-matrix. If A = Mk −Nk and Mk = Fk −Gk are
H-compatible splittings for k = 1, 2 . . . , `, then ρ(H̃1) < 1, where

H̃1 =
∑̀

k=1

Ek


(Fk

−TGk
T )p +

p−1∑

j=0

(Fk
−TGk

T )jFk
−TNk

T


 .

Proof. Since A = Mk − Nk is an H-compatible splitting, we easily obtain that
for k = 1, 2, . . . , `,

〈AT 〉 = 〈A〉T = (〈Mk〉 − |Nk|)T = 〈Mk〉T − |Nk|T = 〈Mk
T 〉 − |Nk

T |.
Hence, AT = Mk

T −Nk
T is an H-compatible splitting. Since Mk = Fk −Gk is

H-compatible splitting for k = 1, 2, . . . , `,

〈Mk
T 〉 = 〈Mk〉T = (〈Fk〉 − |Gk|)T = 〈Fk〉T − |Gk|T = 〈Fk

T 〉 − |Gk
T |.

Hence, Mk
T = Fk

T −Gk
T is H-compatible splitting. Notice that H̃1 is an itera-

tion matrix of two-stage multisplitting method corresponding to outer splittings
AT = Mk

T − Nk
T and inner splittings Mk

T = Fk
T − Gk

T for k = 1, 2, . . . , `.
From Theorem 2.5, ρ(H̃1) < 1. ¤

The following theorem provides a convergence result of two-stage multisplit-
ting method with preweighting when A is an H-matrix.

Theorem 2.7. Let A be an H-matrix. If A = Mk − Nk and Mk = Fk − Gk

are H-compatible splittings for k = 1, 2 . . . , `, then ρ(H0) < 1, where H0 =

I −∑`
k=1 Bk

−1EkA and Bk = Mk

(
I − (Fk

−1Gk)
p
)−1

.

Proof. Let H̃1 = I −∑`
k=1 Ek(Bk

−1)TAT . Since H̃1 is similar to H0
T , ρ(H̃1) =

ρ(H0). From Lemma 2.6, ρ(H̃1) < 1. Therefore, ρ(H0) < 1. ¤
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3. Convergence of ILU-multisplitting method with preweighting

In this section, we study convergence of ILU-multisplitting method with
preweighting. Let Sn denote the set of all pairs of indices of off-diagonal matrix
entries, that is,

Sn = {(i, j) | i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}.
The following theorem shows the existence of the ILU factorization for an H-
matrix A.

Theorem 3.1 ([6]). Let A be an n× n H-matrix. Then, for every zero pattern
set Q ⊂ Sn, there exist a unit lower triangular matrix L = (lij), an upper
triangular matrix U = (uij), and a matrix N = (nij), with lij = uij = 0 if
(i, j) ∈ Q and nij = 0 if (i, j) 6∈ Q, such that A = LU − N . Moreover, the
factors L and U are also H-matrices.

In Theorem 3.1, A = LU−N is called an ILU factorization of A corresponding
to a zero pattern set Q ⊂ Sn. The following theorem shows the relations between
the ILU factorization of an H-matrix A and its comparison matrix 〈A〉.
Theorem 3.2 ([15]). Assume that A is an n × n H-matrix. Let A = LU −N

and 〈A〉 = L̃Ũ − Ñ be the ILU factorizations of A and 〈A〉 corresponding to a
zero pattern set Q ⊂ Sn, respectively. Then each of the following holds:

(a) |L−1| ≤ L̃−1, (b) |U−1| ≤ Ũ−1,

(c) |N | ≤ Ñ , (d) |(LU)−1N | ≤ (L̃Ũ)−1Ñ .

Let A be an n × n H-matrix and A = LkUk −Nk be the ILU-factorizations
of A corresponding to a zero pattern set Qk ⊂ Sn, k = 1, 2, · · · , `. Then
(LkUk, Nk, Ek), k = 1, 2, · · · , `, is a multisplitting of A. Given an initial vec-
tor x0, the corresponding multisplitting method with preweighting for solving
Ax = b is

xi+1 = H0xi +G0b, i = 0, 1, 2, · · · ,
where

G0 =
∑̀

k=1

(LkUk)
−1Ek and H0 = I −G0A.

The following theorem provides a convergence result of ILU-multisplitting method
with preweighting when A is an H-matrix.

Theorem 3.3. Let A be an n × n H-matrix and A = LkUk − Nk be the ILU
factorizations of A corresponding to a zero pattern set Qk ⊂ Sn, k = 1, 2, · · · , `.
Then ρ(H0) < 1, where H0 = I −∑`

k=1(LkUk)
−1EkA.

Proof. Let 〈A〉 = L̃kŨk − Ñk be the ILU factorizations of 〈A〉 corresponding to
a zero pattern set Qk ⊂ Sn for k = 1, 2, · · · , `. Then for k = 1, 2, · · · , `,

〈AT 〉 = ŨT
k L̃T

k − ÑT
k .
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Since L̃−1
k ≥ 0, Ũ−1

k ≥ 0 and Ñk ≥ 0, 〈A〉 = L̃kŨk − Ñk is a regular splitting

of 〈A〉 and 〈AT 〉 = ŨT
k L̃T

k − ÑT
k is also a regular splitting of 〈AT 〉 for each

k = 1, 2, · · · , `. Let H̃1 = I −∑`
k=1 Ek

(
ŨT
k L̃T

k

)−1

〈AT 〉. Notice that H̃1 is an

iteration matrix for the multisplitting method corresponding to a multisplitting
(ŨT

k L̃T
k , Ñ

T
k , Ek), k = 1, 2, · · · , `, of 〈AT 〉. Since 〈AT 〉−1 ≥ 0,

ρ(H̃1) < 1. (5)

Let Ĥ1 = I − ∑`
k=1 Ek(Uk

TLk
T )−1AT . Then Ĥ1 is similar to H0

T . Hence,

ρ(H0) = ρ(Ĥ1). From Theorem 3.2, one obtains

|Lk
−1| ≤ L̃k

−1
, |Uk

−1| ≤ Ũk
−1

, |Nk| ≤ Ñk

for k = 1, 2, · · · , `. Using these inequalities,

|Ĥ1| = |
∑̀

k=1

Ek

(
Uk

TLk
T
)−1

Nk
T | ≤

∑̀

k=1

Ek

(
ŨT
k L̃T

k

)−1

Ñk
T
= H̃1. (6)

From (5) and (6), ρ(Ĥ1) < 1. Hence, ρ(H0) < 1 is obtained. ¤
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