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Abstract. In this paper, we give a solving approach based on a logarithmic-
exponential multiplier penalty function for the constrained minimization
problem. It is proved exact in the sense that the local optimizers of a
nonlinear problem are precisely the local optimizers of the logarithmic-
exponential multiplier penalty problem.
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1. Introduction

Consider the following constrained minimization problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · ,m,

x ∈ Rn,

(1)

where f(x), gi(x) : Rn → R, i = 0, · · · ,m are continuously differentiable func-
tions. Assume that f(x) is coercive, that is

lim
‖x‖→+∞

f(x) = +∞

then there exists a big box X such that intX contains all of relative local min-
imizers of problem (1), where intX denotes the interior of X. Thus, we can
consider the following equivalent problem:

(P )
min f(x)

s.t. x ∈ S = {x ∈ X : gi(x) ≤ 0, i ∈ I}. (2)

where I = {1, · · · ,m}.
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Penalty methods are an important and useful tool in constrained optimization,
see, [1]-[15]. Nondifferentiable penalty function have been the first ones for
which some exactness properties have been established by Zangwill [13]. The
obvious difficulty with the exact penalty function is that it is non-differentiable,
which prevents the use of efficient minimization algorithms. From an algorithmic
viewpoint, this nonifferentiabliliy can induce the so-called Maratos effect which
prevents rapid local convergence. In order to avoid the drawback related to the
nondifferentiability, some authors have introduced some classes of differentiable
exact penalty functions. However, these continuously differentiable exact penalty
functions always involve the derivatives of related function(e.g, [3, 7, 10]). Then
Exponential penalty methods and primal-dual exponential multiplier penalty
methods have been studied for linear and convex programming problems, see,
[1, 2, 4, 5, 11].

In [5], the authors proposed an exponential penalty function and the associ-
ated penalty method,

min fr(x) = f(x) + r

m∑

i=1

exp[gi(x)/r],

which does not need interior starting points, but whose ultimate behavior is just
like an interior penalty method. They analyzed the behavior of the method for
sequences of values for parameter r that convergence quite fast to zero, but the
penalty function is not exact.

In [11], the authors proposed an exact exponential penalty function

f(x) +
1

c

m∑

i=1

ui(exp(cgi(x))− 1),

where c > 0 is a penalty parameter, ui > 0, i = 1, · · · ,m are multipliers, but
they only analyzed the exponential method of multipliers for convex constrained
minimization problems on Rn.

In this paper,we propose an exact logarithmic-exponential multiplier penalty
function for the differentiable minimization problem on a big box X ⊂ Rn. We
get the equivalence between the local optimizer of the original problem and the
local optimizer of the multiplier penalty problem in Section 2 and develop the
algorithm in Section 3.

2. A Logarithmic-Exponential Multiplier Penalty Function

We propose the following logarithmic-exponential multiplier penalty function:

Q(x, λ, p) = f(x) +
2

p

m∑

i=1

ln(1 + exp(pλigi(x))) (3)

where λ = (λ1, · · · , λm) ∈ Rm
+ are parameters which depend on the multipliers,

p > 0 is a penalty parameter.
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Now we consider the following logarithmic-exponential multiplier penalty
problem

(Pλp) min
x∈X

Q(x, λ, p)

We say that x∗ is a stationary point of problem (Pλp), if ∇Q(x∗, λ, p) = 0.
The set of local solutions of problem (·), we denote by L(·).
Definition 1. We say that x∗ ∈ intX is a K-K-T point for problem (P), if there
exists a λ∗ ∈ Rm

+ such that

∇f(x∗) +
∑

i∈I(x∗)

λ∗
i∇gi(x

∗) = 0

λ∗
i ≥ 0, gi(x

∗) ≤ 0, i = 1, · · · ,m,

λ∗
i gi(x

∗) = 0, i = 1, · · · ,m,

Theorem 1. Suppose that x∗ ∈ intX is a K-K-T point for problem (P), Then
for any p > 0, x∗ is a stationary point of problem (Pλ∗p).

Proof. Since λ∗
i gi(x

∗) = 0, i = 1, · · · ,m, we have λ∗
i = 0 for i ∈ I\I(x∗). Thus

∇Q(x∗, λ∗, p) = ∇f(x∗) +
2

p

m∑

i=1

exp(pλ∗
i gi(x

∗))
1 + exp(pλ∗

i gi(x
∗))

pλ∗
i∇gi(x

∗)

= ∇f(x∗) +
∑

i∈I(x∗)

λ∗
i∇gi(x

∗)

= 0.

We complete the proof. ¤

Remark 1. By Theorem 1, if x∗ ∈ L(P )
⋂
intX with Lagrangian multipliers

λ∗
i , i = 1, · · · ,m, then x∗ is a stationary point of problem (Pλ∗p).

Theorem 2. Suppose x∗
λp ∈ S

⋂
intX is a stationary point of problem (Pλp)

with λi ≥ 0, λigi(x
∗
λp) = 0, i = 1, · · · ,m, then x∗

λp is a K-K-T point of problem

(P).

Proof. Since λi ≥ 0, gi(x
∗
λp) ≤ 0, λigi(x

∗
λp) = 0, i = 1, · · · ,m,

we have λi = 0,when i ∈ I\I(x∗
λp). Thus

∇Q(x∗
λp, λ, p) = ∇f(x∗

λp) +
2

p

m∑

i=1

exp(pλigi(x
∗
λp))

1 + exp(pλigi(x∗
λp))

pλi∇gi(x
∗
λp)

= ∇f(x∗
λp) +

∑

i∈I(x∗
λp

)

λi∇gi(x
∗
λp),

and by ∇Q(x∗
λp, λ, p) = 0, we have

∇f(x∗
λp) +

∑

i∈I(x∗
λp

)

λi∇gi(x
∗
λp) = 0,
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where

λi ≥ 0, gi(x
∗
λp) ≤ 0, i = 1, · · · ,m,

λigi(x
∗
λp) = 0, i = 1, · · · ,m.

We complete the proof. ¤

Lemma 1 ([2] Lemma 3.2.1, p.298). Let P and Q be two symmetric matrices.
Assume that Q is positive semidefinite and P is positive definite on the null space
of Q, that is, xTPx > 0 for all x 6= 0 with xTQx = 0. Then there exists a scalar
c̄ such that P + cQ is positive definite for all c > c̄.

Definition 2. We say that the pair (x∗, λ∗) satisfies the second-order sufficient
condition, if

∇f(x∗) +
∑

i∈I(x∗)

λ∗
i∇gi(x

∗) = 0

λ∗
i ≥ 0, gi(x

∗) ≤ 0, i = 1, · · · ,m,

λ∗
i gi(x

∗) = 0, i = 1, · · · ,m,

dT (∇2f(x∗) +
∑

i∈I(x∗)

λ∗
i∇2gi(x

∗))d > 0

for any d ∈ D = {d ∈ B : ∇gi(x
∗)T d ≤ 0, λ∗

i∇gi(x
∗)T d = 0 for all i ∈ I(x∗)},

where B = {d : ‖d‖ = 1}.
Theorem 3. Suppose that (x∗, λ∗) satisfies the second-order sufficient condi-
tion, then x∗ is a strict local minimum point of problem (Pλ∗p), where p > 0 is
sufficiently large. On the other hand, if x∗

λp ∈ S
⋂
intX with λi ≥ 0, λigi(x

∗
λp) =

0, i = 1, · · · ,m satisfies ∇Q(x∗
λp, λ, p) = 0, ∇2Q(x∗

λp, λ, p) is positive definite,

then x∗
λp ∈ L(P ).

Proof. The Hessian matrix Hλ∗p(x
∗) of Q(x, λ∗, p) at x∗ is

Hλ∗p(x
∗) = ∇2Q(x∗, λ∗, p)

= ∇2f(x∗) +
2

p

m∑

i=1

exp(pλ∗
i gi(x

∗))
1 + exp(pλ∗

i gi(x
∗))

pλ∗
i∇2gi(x

∗)

+
2

p

m∑

i=1

exp(pλ∗
i gi(x

∗))
1 + exp(pλ∗

i gi(x
∗))

(pλ∗
i )

2∇gi(x
∗)∇T gi(x

∗)

= ∇2f(x∗) +
∑

i∈I(x∗)

λ∗
i∇2gi(x

∗) + p
∑

i∈I(x∗)

(λ∗
i )

2∇gi(x
∗)∇T gi(x

∗).

By Lemma 1, when p > 0 is sufficiently large, ∇2Q(x∗, λ∗, p) is positive definite.
Noting that x∗ is a stationary point of (Pλ∗p) from Theorem 2, we obtain that
x∗ is a strict local minimum point of problem (Pλ∗p).
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On the other hand, we have

∇Q(x∗
λp, λ, p) = ∇f(x∗

λp) +
2

p

m∑

i=1

exp(pλigi(x
∗
λp))

1 + exp(pλigi(x∗
λp))

pλi∇gi(x
∗
λp)

= ∇f(x∗
λp) +

m∑

i=1

λi∇gi(x
∗
λp)

= 0.

Therefore we have

∇f(x∗
λp) +

∑

i∈I(x∗
λp

)

λi∇gi(x
∗
λp) = 0,

λi ≥ 0, gi(x
∗
λp) ≤ 0, i = 1, · · · ,m,

λigi(x
∗
λp) = 0, i = 1, · · · ,m.

(4)

i.e., x∗
λp is a K-K-T point of (P). Furthermore, we have

0 < dTHλp(x
∗
λp)d

= dT


∇2f(x∗

λp) +
∑

i∈I(x∗
λp

)

λi∇2gi(x
∗
λp)


 d+ p

∑
i∈I(x∗

λp
)

(λi)
2dT∇gi(x

∗
λp)∇T gi(x

∗
λp)d

= dT


∇2f(x∗

λp) +
∑

i∈I(x∗
λp

)

λi∇2gi(x
∗
λp)


 d,

for any d ∈ D′ = {d ∈ B : ∇gi(x
∗
λp)

T d ≤ 0, λi∇gi(x
∗
λp)

T d = 0, i ∈ I(x∗
λp)}.

And by (4), we have thatx∗
λp is a strictly local minimum of (P). ¤

Remark 2. If f(x), gi(x), i = 1, · · · ,m are convex, and f(x), gi(x) ∈ C2, i =
1, · · · ,m, then for any p > 0, x∗ ∈ L(Pλ∗p).

Theorem 4. Suppose that
(1) x∗ is a K-K-T point for problem (P) with Lagrangian multipliers λ∗

i ≥ 0, i =
1, · · · ,m, furthermore, suppose that the second-order sufficient condition holds
at x∗;
(2) ∇gi(x

∗), i ∈ I(x∗) are linearly independent, and ‖I(x∗)‖ = n, where ‖I(x∗)‖
is the number of elements in I(x∗). If p > 0 is sufficiently large, λi > 0, i =
1, · · · ,m are finite, and 4λi, i ∈ I(x∗) are appropriately chosen, then ∇Q(x∗, λ, p) =
0, ∇2Q(x∗, λ, p) is positive definite, where λi = λ∗

i + 4λi, i ∈ I(x∗). It means
that x∗ ∈ L(Pλp).
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Proof. By λi = λ∗
i +4λi for i ∈ I(x∗), we have

∇Q(x∗, λ, p) = ∇f(x∗) +
2

p

m∑

i=1

exp(pλigi(x
∗))

1 + exp(pλigi(x∗))
pλi∇gi(x

∗)

= ∇f(x∗) +
∑

i∈I(x∗)

λ∗
i∇gi(x

∗) +
∑

i∈I(x∗)

∆λi∇gi(x
∗)

+
∑

i 6∈I(x∗)

2λi exp(pλigi(x
∗))

1 + exp(pλigi(x∗))
∇gi(x

∗).

(5)

By K-K-T conditions, we have

∇f(x∗) +
∑

i∈I(x∗)

λ∗
i∇gi(x

∗) = 0. (6)

Furthermore, Since ∇gi(x
∗), i ∈ I(x∗) are linearly independent, there exist

αij , j ∈ I(x∗) such that ∇gi(x
∗) =

∑
j∈I(x∗)

αij∇gj(x
∗) for any i 6∈ I(x∗). Thus

by (5) and (6) we have

∇Q(x∗, λ, p) =
∑

i∈I(x∗)

∆λi∇gi(x
∗) +

∑

i 6∈I(x∗)

2λi exp(pλigi(x
∗))

1 + exp(pλigi(x∗))
∇gi(x

∗)

=
∑

i∈I(x∗)

∆λi∇gi(x
∗) +

∑

i 6∈I(x∗)

2λi exp(pλigi(x
∗))

1 + exp(pλigi(x∗))

×
∑

j∈I(x∗)

αij∇gj(x
∗)

=
∑

i∈I(x∗)

(∆λi +
∑

j 6∈I(x∗)

αji
2λj exp(pλjgj(x

∗))
1 + exp(pλjgj(x∗))

)∇gi(x
∗).

(7)

In (7), let ∆λi = − ∑
j 6∈I(x∗)

αji
2λj exp(pλjgj(x

∗))
1+exp(pλjgj(x∗)) ) for i ∈ I(x∗), then

∇Q(x∗, λ, p) = 0. (8)
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Furthermore, by λi = λ∗
i +4λi for i ∈ I(x∗), we have

∇2Q(x∗, λ, p) = ∇2f(x∗) +
m∑
i=1

2λi exp(pλigi(x
∗))

1 + exp(pλigi(x∗))
∇2gi(x

∗)

+

m∑
i=1

2p(λi)
2 exp(pλigi(x

∗))
1 + exp(pλigi(x∗))

∇gi(x
∗)∇T gi(x

∗)

= ∇2f(x∗) +
∑

i∈I(x∗)

λ∗
i∇2gi(x

∗) +
∑

i∈I(x∗)

∆λi∇2gi(x
∗)

+
∑

i6∈I(x∗)

2λi exp(pλigi(x
∗))

1 + exp(pλigi(x∗))
∇2gi(x

∗)

+
∑

i∈I(x∗)

p(λi)
2∇gi(x

∗)∇T gi(x
∗)

+
∑

i6∈I(x∗)

2p(λi)
2 exp(pλigi(x

∗))
1 + exp(pλigi(x∗))

∇gi(x
∗)∇T gi(x

∗)

= P + pQ+
∑

i∈I(x∗)

∆λi∇2gi(x
∗)

+
∑

i6∈I(x∗)

2λi exp(pλigi(x
∗))

1 + exp(pλigi(x∗))
∇2gi(x

∗)

+
∑

i6∈I(x∗)

2p(λi)
2 exp(pλigi(x

∗))
1 + exp(pλigi(x∗))

∇gi(x
∗)∇T gi(x

∗)

(9)

where

P = ∇2f(x∗) +
∑

i∈I(x∗)

λ∗
i∇2gi(x

∗), Q =
∑

i∈I(x∗)

p(λi)
2∇gi(x

∗)∇T gi(x
∗).

By Lemma 1, when p > 0 is sufficiently large, P + pQ is positive definite. And
we have

∆λi = −
∑

j 6∈I(x∗)

αji
2λjexp(pλjgj(x

∗))
1 + exp(pλjgj(x∗))

) → 0, for i ∈ I(x∗),

2λi exp(pλigi(x
∗))

1 + exp(pλigi(x∗))
→ 0, for i 6∈ I(x∗),

2p(λi)
2 exp(pλigi(x

∗))
1 + exp(pλigi(x∗))

→ 0, for i 6∈ I(x∗),

when p → +∞. From above and (9), we have that ∇2Q(x∗, λ, p) is positive
definite when p > 0 is sufficiently large. This completes our proof. ¤
Remark 3. By ‖I(x∗)‖ = n, we have m ≥ n, m denotes the number of con-
strained functions.
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3. The Algorithm and Numerical Examples

Algorithm 1.

Step 1. Let p > 0 is sufficiently large, λi > 0, i = 1, · · · ,m are finite, ε > 0.

Step 2. Choose any x0 ∈ X as an initial point. Compute

min
x∈Rn

{Q(x, λ, p)} = min
x∈Rn

{
f(x) +

2

p

m∑

i=1

ln (1 + exp(pλigi(x)))

}

x∗
λp is an approximate minimizer of Q(x, λ, p), If ‖∇Q(x∗

λp, λ, p)‖ < ε, then stop,
otherwise, goto Step 3.

Step 3. Let

λ̄i =
2λi exp(pλigi(x

∗
λp))

1 + exp(pλigi(x∗
λp))

, i = 1, · · · ,m

p := p+ u, λi := λ̄i, x0 := x∗
λp,

where u is a positive constant, goto Step 2.

Example 1.

min f(x) = −2x1 + x2 s.t. (1− x1)
3 − x2 ≥ 0, x2 + 0.25x2

1 − 1 ≥ 0

We have

g1(x) = x2 − (1− x1)
3 ≤ 0, g2(x) = 1− x2 − 0.25x2

1 ≤ 0

Q(x, λ, p) = f(x) +
2

p

2∑

i=1

ln(1 + exp(pλigi(x)))

Starting point x0 = (−0.2500000, 1.200000), p = 10.0, λi = 1.0, i = 1, 2, u =
0.002, ε = 1.0E − 4, we obtain results shown in table 1.

Table 1
k xk ∇Q p λ1

0 (-0.2500000, 1.200000) 2.122941 10.000 1.000000

1 (2.180616, -1.645655) 2.5307140E-04 10.002 0.9997565

2 (1.899213, 4.3423112E-02) 6.7522039E-04 10.004 1.998612

3 (1.725489, 0.2020586) 9.3312917E-04 10.006 3.997190

4 (1.622662, 0.2977812) 9.2928542E-04 10.008 7.994380

5 (-2.1323573E-02, 1.025487) 2.0570308E-03 10.010 0.6329106

6 (9.6172364E-03, 0.9962481) 5.3806911E-04 10.012 0.6825758

7 (-3.5840159E-03, 1.001504) 1.7140124E-05
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k λ2 g1(x) g2(x) f(x) Q(xk)

0 1.000000 -0.7531250 -0.2156250 1.700000 1.722014

1 1.999999 -4.8708862E-05 1.456883 -6.006886 -2.954539

2 2.998571 0.7705120 5.4824539E-02 -3.755002 -1.937346

3 4.996642 0.5839090 5.3612988E-02 -3.248920 -0.5568899

4 8.994537 0.5391926 4.3960590E-02 -2.947543 1.823324

5 1.632543 -3.9857671E-02 -2.5600500E-02 1.068134 1.095218

6 1.682267 2.4823191E-02 3.7288107E-03 0.9770136 1.276504

7 -9.2866849E-03 -1.5071557E-03 1.008672 1.276841

We have x = (−3.5840159E − 03, 1.001504), f(x) = 1.008672. In fact, the
optimal solution x∗ = (0.0, 1.0), f(x∗) = 1.0.

Example 2.

min f(x) = 100(x2 − x2
1)

2 + (1− x1)
2

s.t. x2
1 + x2

2 ≥ −0.25,
1

3
x2 + x1 ≥ −0.1, −1

3
x1 + x2 ≥ −0.1

We have

g1(x) = −x2
1 − x2

2 − 0.25, g2(x) = −1

3
x2 − x1 − 0.1, g3(x) =

1

3
x1 − x2 − 0.1

Q(x, λ, p) = f(x) +
2

p

3∑

i=1

ln(1 + exp(pλigi(x)))

Starting point x0 = (1.2.00000, 1.100000), p = 1.0, λi = 1.0, i = 1, 2, 3, u =
5, ε = 1.0E − 4, we obtain results shown in table 2.

Table 2
k xk ∇Q p λ1 λ2

0 (-0.2500000, 1.200000) 177.0257 1.0 1.000000 1.000000

1 (1.277228, 1.631926) 2.4357214E-04 6.0 4.5155751E-04 0.2393418

2 (1.111267, 1.235253 ) 2.2340014E-04 11.0 4.4971582E-04 7.1507618E-02

3 (1.062761, 1.129658) 1.8836425E-04 16.0 4.4676193E-04 4.0910590E-02

4 (1.040610, 1.082999) 3.0575768E-04 21.0 4.4276091E-04 2.6310483E-02

5 (1.040588, 1.082993) 1.7617838E-02 26.0 4.3760342E-04 1.8283980E-02

6 (1.021427, 1.043382) 2.5334687E-04 31.0 4.3167398E-04 1.3522550E-02

7 (1.021416, 1.043379) 8.5470350E-03 36.0 4.2479482E-04 1.0401369E-02

8 (1.021421, 1.043361) 9.9955704E-03 41.0 4.1705897E-04 8.2490547E-03

9 (1.011237, 1.022638) 3.7909663E-04 46.0 4.0879330E-04 6.7169140E-03

10 (1.009503, 1.019129) 1.6116150E-04 51.0 3.9992481E-04 5.5767386E-03

11 (1.009491, 1.019114) 4.6334486E-03 56.0 3.9051482E-04 4.7040856E-03

12 (1.009494, 1.019110) 2.3056224E-03 61.0 3.8066308E-04 4.0214998E-03

13 (1.006291, 1.012643) 2.9541465E-05
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k λ3 g1(x) g2(x) g3(x) f(x) Q(xk)

0 1.000000 -2.900000 -1.300000 -1.200000 11.60001 11.92301

1 0.1214337 -4.544495 -1.377228 -1.731926 7.6893203E-02 0.2621773

2 6.6620775E-02 -3.010764 -1.211267 -1.335253 1.2391812E-02 0.4028926

3 3.8482636E-02 -2.655590 -1.162761 -1.229658 3.9428622E-03 0.2520121

4 2.5055755E-02 -2.505755 -1.140610 -1.182999 1.6508403E-03 0.1849063

5 1.7500091E-02 -2.505697 -1.140588 -1.182993 1.6502559E-03 0.1481308

6 1.3047919E-02 -2.381960 -1.121427 -1.143382 4.5959529E-04 0.1241425

7 1.0083369E-02 -2.381930 -1.121416 -1.143379 4.5942853E-04 0.1069896

8 8.0203898E-03 -2.381903 -1.121421 -1.143361 4.5922326E-04 9.4191276E-02

9 6.5565580E-03 -2.318389 -1.111237 -1.122638 1.2641333E-04 8.4117189E-02

10 5.4604234E-03 -2.307720 -1.109503 -1.119129 9.0414032E-05 7.6029547E-02

11 4.6163662E-03 -2.307666 -1.109491 -1.119114 9.0255897E-05 6.9387071E-02

12 3.9532087E-03 -2.307663 -1.109494 -1.119110 9.0237809E-05 6.3833192E-02

13 -2.288067 -1.106291 -1.112643 3.9621602E-05 5.9106242E-02

We have x = (1.006291, 1.012643), f(x) = 3.9621602E−05. In fact, the optimal
solution x∗ = (1.0, 1.0), f(x∗) = 0.0.

Example 3.

min f(x) = x2
1 + 2x2

2 − 2x1x2 − 2x1 − 6x2

s.t. x1 + x2 ≤ 2, −x1 + 2x2 ≤ 2, x1, x2 ≥ 0

We have

g1(x) = x1 + x2 − 2, g2(x) = −x1 + 2x2 − 2

Q(x, λ, p) = f(x) +
2

p

2∑

i=1

ln(1 + exp(pλigi(x)))

X = {(x1, x2) : 0 ≤ xi ≤ 2; i = 1, 2}, x ∈ X

Let x0 = (0.0, 0.7), p = 1.0, λi = 1.0, i = 1, 2, u = 40, ε = 1.0E−3, we obtain
results shown in table 3.

Table 3
k x ∇Q p λ1

0 (0.0000000,0.7000000) 5.576121 1.000000 1.000000

1 (2.309561,1.852993) 2.827582 41.000000 1.793672

2 (0.8102180,1.206876) 5.0201250E-04 81.000000 2.792842

3 (0.8000078,1.200013) 8.9519215E-04

k λ2 g1(x) g2(x) f(x) Q(x, λ, p)

0 1.000000 -1.300000 -0.6000000 -3.220000 -1.863007

1 0.7070528 2.162554 -0.6035743 -12.09504 -6.679726

2 1.4422274E-05 1.7093956E-02 -0.3964662 -7.247805 -7.174270

3 2.0682812E-05 -0.3999819 -7.200058 -7.165776

We have x = (0.8000078, 1.200013), f(x) = −7.200058. In fact, the optimal
solution x∗ = (0.8, 1.2), f(x∗) = −7.2.
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