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POSITIVE SOLUTIONS OF THE SECOND-ORDER SYSTEM

OF DIFFERENTIAL EQUATIONS IN BANACH SPACES

JIANXIN CAO∗, HAIBO CHEN AND JIN DENG

Abstract. In this paper, a second-order system of multi-point bound-
ary value problems in Banach spaces is investigated. Based on a specially
constructed cone and the fixed point theorem of strict-set-contraction op-
erators, the criterion of the existence and multiplicity of positive solutions
are established. And two examples demonstrating the theoretic results are
given.
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1. Introduction

The theory of ordinary differential equations in abstract spaces is an impor-
tant new branch (see [1-6]). Recently, the existence and multiplicity of positive
solutions for boundary value problems of ordinary differential equations have
been of great interest in mathematics and engineering sciences (see [7, 8]). How-
ever, to the authors’ knowledge, few paper has considered the existence of posi-
tive solutions for second-order system of multi-point boundary value problems,
especially in abstract spaces. In scalar spaces, we refer the readers to [9-16].

Erbe and Wang [9] discussed the boundary value problem:




−u′′(t) = f(t, u(t)),
αu(0)− βu′(0) = 0,
γu(1) + δu′(1) = 0.

(1)

Using a Krasnosel
,

skii fixed-point theorem, the existence of solutions of (1) is
obtained with the assumption that f is superlinear or sublinear. Yang and Sun
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[12] considered the boundary value problem of the following differential system:



−u′′(t) = f(t, v(t)),
−v′′(t) = g(t, u(t)),
u(0) = u(1) = 0,
v(0) = v(1) = 0.

(2)

the existence of solutions of (2) is established by applying the degree theory. Hu
[14] investigated the existence and multiplicity of positive solutions of boundary
value problems: 




−u′′(t) = f(t, v(t)),
−v′′(t) = g(t, u(t)),
αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,
αv(0)− βv′(0) = 0, γv(1) + δv′(1) = 0,

(3)

and establish some corresponding result by using a fixed point theorem due to
Krasnosel

,

skii [17].
In this paper, Using the properties of Green function and the well-known fixed

point theorem of strict-set-contraction [3, 4] stated in section 2, we investigate
the existence and multiplicity of positive solutions of the following system of
multi-point boundary value problems(BVPs)




−u′′(t) = f(t, v(t)), t ∈ (0, 1)
−v′′(t) = g(t, u(t)), t ∈ (0, 1)
u(0) = βu′(0), αu(η) = u(1),
v(0) = βv′(0), αv(η) = v(1),

(4)

in Banach space E, where θ is zero element of E, 0 < α < 1, β ≥ 0, η ∈ (0, 1),
ρ = (1− αη) + β(1− α) 6= 0, f(t, θ) ≡ θ, g(t, θ) ≡ θ.

This paper is organized as follows. In section 2, we present some preliminaries
and lemmas, which are necessary to Sections 3 and 4. In section 3 the main re-
sults and the proofs concerning with the existence of positive solutions of BVPs
(4) are given. The proofs concerning with the multiplicity of positive solutions
of BVPs (4) are given in section 4. Finally, in section 5, we give some examples
to illustrate our theoretic results.

2. Preliminaries

In this section, we provide some background material from the theory of cone
in Banach space, and then state the fixed point theorem for a cone preserving
operator and some lemmas about BVPs (4).

Let the real Banach space E with norm ‖ · ‖ be partially ordered by a cone
P of E, i.e., u ≤ v if and only if v − u ∈ P , and P ∗ denotes the dual cone of P .
u < v if and only if u ≤ v and u 6= v, where u, v ∈ E.

A cone P is called normal if inf{‖x+ y‖ : x, y ∈ P, ‖x‖ = ‖y‖ = 1} > 0. We
denote the normal constant of P by N , i.e., θ ≤ u ≤ v implies ‖u‖ ≤ N‖v‖.
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Set I = [0, 1], then C[I, E] is a Banach space with norm ‖u‖C = max0≤t≤1 ‖u(t)‖.
Q = {u ∈ C[I, E] : u(t) ≥ θ for t ∈ I} denotes a cone of the Banach space
C[I, E].

(u(t), v(t)) ∈ C2[I, E] × C2[I, E] is called a positive solution of BVPs (4), if
u(t), v(t) ∈ Q, u(t), v(t) 6≡ θ and satisfy BVPs (4).

For a bounded set V in Banach spaces, we denote α(V ) , αC(V ) the Kura-
towski measure of noncompactness for a bounded set V in E and in C[I, E],
respectively. An operator A : D → E(D ⊂ E) is said to be a k-set contraction
if A is continuous and bounded and there exists a constant k ≥ 0 such that
α(A(V )) ≤ kα(V ) for any bounded V ⊂ D. A k-set contraction with k < 1
is called a strict-set-contraction. The closed balls in space E and C[I, E] are
denoted by Tr = {u ∈ E : ‖u‖ ≤ r} (r > 0) and Br = {u ∈ C[I, E] : ‖u‖C ≤
r} (r > 0), respectively.

For application in what follows, we firstly state the following lemmas.

Lemma 2.1(Demling [2]). Let D ⊂ E and D is a bounded set, f is
uniformly continuous and bounded from I ×D into E. Then

α(f(I ×B)) = max
0≤t≤1

α(f(t, B)), ∀ B ⊂ D. (5)

Lemma 2.2. If H ⊂ C(J,E) is bounded and equicontinuous, then αC(H) =
α(H(J)) = maxt∈J α(H(t)), where H(J) = {x(t) : t ∈ J, x ∈ H}, H(t) =
{x(t) : x ∈ H}.
Lemma 2.3(Cac and Gatica [3], Potter [4]). Let K be a cone of a real
Banach space E and Kr,R = {u ∈ K : r ≤ ‖u‖ ≤ R} with 0 < r < R.
Suppose that A : Kr,R → K is a strict-set-contraction such that one of
the following two conditions is satisfied:
(i) Au 6≤ u for any u ∈ K, ‖u‖ = r and Au 6≥ u for any u ∈ K, ‖u‖ = R;
(ii) Au 6≥ u for any u ∈ K, ‖u‖ = r and Au 6≤ u for any u ∈ K, ‖u‖ = R.
Then the operator A has at least one fixed point u ∈ Kr,R such that

r < ‖u‖ < R.

Besides the lemma 2.1, 2.2 and 2.3, we list some lemmas about the
properties of the Green function and the solution of BVPs (4).

The Green function of the BVPs (4) can be explicitly given by

G(t, s) =
1

ρ





(s+ β)[(1− αη)− (1− α)t], 0 ≤ s ≤ min{t, η},
(s+ β)(1− t) + α(t− s)(η + β), η ≤ s ≤ t,
(t+ β)[(1− αη)− (1− α)s], t ≤ s ≤ η,
(t+ β)(1− s), max{t, η} ≤ s ≤ 1.

(6)

Lemma 2.4. The Green function G(t, s) satisfies
(i) 0 ≤ G(t, s) ≤ G(s, s) ≤ M, (t, s) ∈ I × I;
(ii) G(t, s) ≥ λG(s, s), t ∈ [ 14 ,

3
4 ], s ∈ I,

where λ = min{ 1
4(1−η) ,

3+4β
4(1+β)} ≤ 1 , M = 1

ρ (1 + β)(1 + α) .
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Obviously, (u(t), v(t)) is the solution of BVPs (4), if and only if
(u(t), v(t)) ∈ C[I, E] × C[I, E] is the solution of the system of integral
equations {

u(t) =
∫ 1

0
G(t, s)f(s, v(s))ds,

v(t) =
∫ 1

0
G(t, s)g(s, u(s))ds.

(7)

where G(t, s) is defined by (6).
Integral equations (7) can be transferred to the nonlinear integral

equation

u(t) =

∫ 1

0

G(t, s)f(s,

∫ 1

0

G(s, τ)g(τ, u(τ))dτ)ds. (8)

By (8), we can define an operator A : C[I, E] → C[I, E] as follows:

(Au)(t) =

∫ 1

0

G(t, s)f(s,

∫ 1

0

G(s, τ)g(τ, u(τ))dτ)ds. (9)

Lemma 2.5. The BVPs (4) has a solution (u(t), v(t)) if and only if u(t)
satisfy (8), i.e., u is a fixed point of the operator A defined by (9) and

v(t) =

∫ 1

0

G(t, s)g(s, u(s))ds.

Lemma 2.6. Suppose f, g ∈ C[I × P, P ], then the solution u(t) of the
nonlinear integral equation (8) satisfies u(t) ≥ θ, t ∈ I, that is, u(t) ∈
Q, t ∈ I, and u(t) ≥ λu(s), ∀t ∈ [ 14 ,

3
4 ], s ∈ I.

Proof. In view of f, g ∈ C[I×P, P ], Lemma 2.4 and (8), we have u(t) ≥ θ, t ∈ I.
Since u(t) is the solution of the nonlinear integral equation (8), by (7), (8),

and Lemma 2.4, we get

u(t) =
∫ 1

0
G(t, s1)f(s1,

∫ 1

0
G(s1, τ)g(τ, u(τ))dτ)ds1

=
∫ 1

0
G(t,s1)
G(s1,s1)

G(s1, s1)f(s1,
∫ 1

0
G(s1, τ)g(τ, u(τ))dτ)ds1

≥ λ
∫ 1

0
G(s1, s1)f(s1,

∫ 1

0
G(s1, τ)g(τ, u(τ))dτ)ds1

≥ λ
∫ 1

0
G(s, s1)f(s1,

∫ 1

0
G(s1, τ)g(τ, u(τ))dτ)ds1

≥ λu(s), t ∈ [ 14 ,
3
4 ], s ∈ I.

¤

To obtain the positive solution of BVPs (4), we should select a suitable sub-
cone of C[I, E]. Set

K = {u ∈ Q : u(t) ≥ λu(s), t ∈ [
1

4
,
3

4
], s ∈ I},

where λ is stated in Lemma 2.4. It is clear that K is a cone of the Banach space
C[I, E] and K ⊂ Q. For any u ∈ Q, by Lemmas 2.5, we can obtain A(u) ∈ K.
Then A(Q) ⊂ K, therefore

A(K) ⊂ K. (10)
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3. The existence of positive solutions

In this section, we study the existence of positive solutions for the BVPs
(4). For convenience sake, we give the following hypotheses: (H1) For any
r′ > 0, r > 0, f, g are uniformly continuous and bounded on I × P ∩ Tr′ and
I × P ∩ Tr, respectively. Furthermore, there exist constants Lr, Lr′ such that

α(g(t, x)) ≤ Lrα(D), t ∈ I, D ⊂ P ∩ Tr,

α(f(t, x)) ≤ Lr′α(D), t ∈ I, D ⊂ P ∩ Tr′ ,

where Lr′ ≥ 0, Lr ≥ 0 satisfy

LrLr′ <
1

4M2
,

and M = 1
ρ (1 + β)(1 + α) stated in Lemma 2.4;

(H2)

lim
‖u‖→0

sup
t∈I

‖f(t, u)‖
‖u‖ = 0, lim

‖u‖→0
sup
t∈I

‖g(t, u)‖
‖u‖ = 0;

(H3) There exists φ ∈ P ∗, such that φ(x) > 0, for any u > θ, and

lim
‖u‖→∞

inf
t∈[ 14 ,

3
4 ]

φ(f(t, u))

φ(u)
= ∞, lim

‖u‖→∞
inf

t∈[ 14 ,
3
4 ]

φ(g(t, u))

φ(u)
= ∞;

(H4)

lim
‖u‖→∞

sup
t∈I

‖f(t, u)‖
‖u‖ = 0, lim

‖u‖→∞
sup
t∈I

‖g(t, u)‖
‖u‖ = 0;

(H5) There exists φ ∈ P ∗, such that φ(x) > 0, for any u > θ, and

lim
‖u‖→0

inf
t∈[ 14 ,

3
4 ]

φ(f(t, u))

φ(u)
= ∞, lim

‖u‖→0
inf

t∈[ 14 ,
3
4 ]

φ(g(t, u))

φ(u)
= ∞;

We firstly prove the following lemma.

Lemma 3.1. Suppose that (H1) hold, then operator A is a strict-set-contraction
on D ⊂ P ∩Br.

Proof. The proof is similar to the proof of Lemma 2 in [5]. By (H1), and Lemma
2.1, we have

α(f(I ×D)) = max0≤t≤1 α(f(t,D)) ≤ Lr′α(D), ∀D ⊂ P ∩ Tr′ ,
α(g(I ×D)) = max0≤t≤1 α(g(t,D)) ≤ Lrα(D), ∀D ⊂ P ∩ Tr. (11)

Since f, g are uniformly continuous and bounded on I ×P ∩ Tr′ and I ×P ∩ Tr,
respectively, we see that, from Lemma 2.4, the operator A defined by (9) is
continuous and bounded on Q ∩ Br. For S ⊂ Q ∩ Br, the set A(S) = {Au :
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u(t) ∈ S} are uniformly bounded and equicontinuous. Therefore, by Lemma 2.2,
we see

αC(A(S)) = sup
t∈I

α(A(S(t))), (12)

where A(S(t)) = {Au(t) : u ∈ S, t is fixed} ⊂ P ∩ Tr, for any t ∈ I.
For any u ∈ C[I, E], we firstly have

Sv = {v(s) =
∫ 1

0

G(s, τ)g(τ, u(τ))dτ : τ ∈ I, u ∈ S} ⊂ P ∩ Tr′ .

Using the obvious formula
∫ 1

0
u(t)dt ∈ c̄o{u(t) : t ∈ I}, we can get

α(A(S(t))) = α{∫ 1

0
G(t, s)f(s,

∫ 1

0
G(s, τ)g(τ, u(τ))dτ)ds : s ∈ I, u ∈ S}

= α{∫ 1

0
G(t, s)f(s, v(s))ds : s ∈ I, v ∈ Sv}

≤ α(c̄o{G(t, s)f(s, v(s)) : s ∈ I, v ∈ Sv})
≤ Mα(c̄o{f(s, v(s)) : s ∈ I, v ∈ Sv})
≤ Mα(f(I ×Bv))
≤ MLr′α(Bv),

(13)

where Bv = {v(s) : s ∈ I, v ∈ Sv} ⊂ P ∩ Tr′ .
From the fact obtained in the proof of Lemma 2(11) in [5], we know

α(Bv) ≤ 2α(Sv). (14)

Similarly to (13), we have

α(Sv) = α{∫ 1

0
G(t, s)g(s, u(s))ds : s ∈ I, u ∈ S}

≤ α(c̄o{G(t, s)g(s, u(s)) : s ∈ I, u ∈ S})
≤ Mα(c̄o{g(s, u(s)) : s ∈ I, v ∈ S})
≤ Mα(g(I ×B))
≤ MLrα(B),

(15)

where B = {u(s) : s ∈ I, u ∈ S} ⊂ P ∩ Tr.
Similarly to (14), we have

α(B) ≤ 2α(S). (16)

It follows from (12)-(16) that

αCA(S) ≤ 4M2Lr′LrαC(S), ∀S ⊂ Q ∩Br.

Consequently, A is a strict-set-contraction on S ⊂ Q ∩Br, because of

4M2Lr′Lr < 1.

¤

Now we consider the existence of positive solutions of BVPs (4).

Theorem 3.1. Let cone P be normal, and conditions (H1), (H2), (H3) be sat-
isfied. Then BVPs (4) has at least one positive solution.
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Proof. By Lemma 2.5 and Lemma 2.6, we need to seek fixed points of A in the
cone K. To the end, it suffices to show that the conditions of Lemma 2.3 hold
with respect to A.

Firstly, from (H2) and f(t, θ) ≡ θ, g(t, θ) ≡ θ, there exists a δ1 > 0 such that

‖f(t, u)‖ ≤ ε1‖u‖, ∀u ∈ P, ‖u‖ < δ1, t ∈ I,
‖g(t, u)‖ ≤ ε1‖u‖, ∀u ∈ P, ‖u‖ < δ1, t ∈ I,

(17)

where ε21 ∈ (0, (NM2)−1), that is,

0 < NM2ε21 < 1. (18)

For any r ∈ (0,min{δ1, δ1
Mε1

}), we now prove that

Au 6≥ u for any u ∈ K, ‖u‖C = r. (19)

Indeed, suppose by contradiction that there exists u1 ∈ K with ‖u1‖C = r, such
that Au1 ≥ u1. Together with (9) and Lemma 2.4, we have

θ ≤ u1(t) ≤ (Au1)(t) =
∫ 1

0
G(t, s)f(s,

∫ 1

0
G(s, τ)g(τ, u1(τ))dτ)ds

≤ M
∫ 1

0
f(s,

∫ 1

0
G(s, τ)g(τ, u1(τ))dτ)ds, (20)

and

‖ ∫ 1

0
G(s, τ)g(τ, u1(τ))dτ‖ ≤ M‖ ∫ 1

0
g(τ, u1(τ))dτ‖

≤ M‖g(τ, u1(τ))‖
≤ Mε1‖u1(τ)‖
≤ Mε1r
< δ1.

(21)

By Lemma 2.4, (17), (18), (20),(21) and the cone P being normal, we get

‖u1(t)‖ ≤ NM‖ ∫ 1

0
f(s,

∫ 1

0
G(s, τ)g(τ, u1(τ))dτ)ds‖

≤ NM
∫ 1

0
ε1‖

∫ 1

0
G(s, τ)g(τ, u1(τ))dτ‖ds

≤ NMε1‖
∫ 1

0
G(s, τ)g(τ, u1(τ))dτ‖

≤ NM2ε21r
< r.

So ‖u1‖C < r, which contradicts ‖u1‖C = r. Thus (19) is true.
Next, by (H3), there exists R1 > 0, such that

φ(f(t, u)) ≥ M1φ(u), ∀u ∈ P, ‖u‖ ≥ R1, t ∈ [ 14 ,
3
4 ],

φ(g(t, u)) ≥ M1φ(u), ∀u ∈ P, ‖u‖ ≥ R1, t ∈ [ 14 ,
3
4 ],

(22)

where

M1 > max{(λ 3
2

∫ 3
4

1
4

G(s, s)ds)−1, N(λ

∫ 3
4

1
4

G(s, s)ds)−1}. (23)

Now, for any

R >
NR1

λ
, (24)
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we are going to verify that

Au 6≤ u for any u ∈ K, ‖u‖C = R. (25)

Suppose by contradiction that there exists u2 ∈ K with ‖u2‖C = R, such that
Au2 ≤ u2. Then u2(t) ≥ λu2(s), λ‖u2(s)‖ ≤ N‖u2(t)‖, for ∀ t ∈ [ 14 ,

3
4 ], ∀ s ∈ I.

And so, by (24)

min
t∈[ 14 ,

3
4 ]
‖u2(t)‖ ≥ λ

N
·max

s∈I
‖u2(s)‖ =

λ

N
· ‖u2‖C =

λR

N
> R1. (26)

By (22), (26) and Lemma 2.4, we get

φ(
∫ 1

0
G(s, τ)g(τ, u2(τ))dτ) ≥ ∫ 1

0
G(s, τ)φ(g(τ, u2(τ)))dτ

≥ λ
∫ 3

4
1
4

G(τ, τ)φ(g(τ, u2(τ)))dτ

≥ λM1

∫ 3
4
1
4

G(τ, τ)φ(u2(τ))dτ

≥ λM1

∫ 3
4
1
4

G(τ, τ)dτ · φ(u2(s)).

Together with the property of φ, we imply

∫ 1

0

G(s, τ)g(τ, u2(τ))dτ ≥ λM1

∫ 3
4

1
4

G(τ, τ)dτ · u2(s) ≥ θ.

Observing the cone P being normal, (23), (26), for any s ∈ [ 14 ,
3
4 ], we get

‖ ∫ 1

0
G(s, τ)g(τ, u2(τ))dτ‖ ≥ 1

N λM1

∫ 3
4
1
4

G(τ, τ)dτ · ‖u2(s)‖
≥ 1

N λM1

∫ 3
4
1
4

G(τ, τ)dτ ·mins∈[ 14 ,
3
4 ]
‖u2(s)‖

≥ 1
N λM1

∫ 3
4
1
4

G(τ, τ)dτ ·R1

≥ R1.

(27)

By (9),(22),(27), Lemma 2.4 and Lemma 2.6, we get

φ(u2(t0)) ≥ φ(Au2(t0)) =
∫ 1

0
G(t0, s)φ(f(s,

∫ 1

0
G(s, τ)g(τ, u2(τ))dτ))ds

≥ ∫ 3
4
1
4

G(t0, s)φ(f(s,
∫ 1

0
G(s, τ)g(τ, u2(τ))dτ))ds

≥ M1

∫ 3
4
1
4

G(t0, s)φ(
∫ 1

0
G(s, τ)g(τ, u2(τ))dτ)ds

≥ M1

∫ 3
4
1
4

G(t0, s)
∫ 3

4
1
4

G(s, τ)φ(g(τ, u2(τ)))dτds

≥ λM2
1

∫ 3
4
1
4

G(t0, s)
∫ 3

4
1
4

G(τ, τ)φ(u2(τ))dτds

≥ λM2
1

∫ 3
4
1
4

G(t0, s)
∫ 3

4
1
4

G(τ, τ)dτ · φ(u2(s))ds

≥ λ2M2
1

∫ 3
4
1
4

G(τ, τ)dτ
∫ 3

4
1
4

G(t0, s)ds · φ(u2(t0))

≥ λ(λM1

∫ 3
4
1
4

G(s, s)ds)2 · φ(u2(t0)),
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where t0 ∈ [ 14 ,
3
4 ] is given. Observing φ(u2(t0)) > 0, we can conclude

λ(λM1

∫ 3
4

1
4

G(s, s)ds)2 ≤ 1,

which contradicts with (23). Therefore (25) is true. By (19) and (25), we showed
that the condition (ii) of Lemma 2.3 is satisfied.

Finally, by Lemma 3.1 and (10), A is a strict-set-contraction on Kr,R = {x ∈
K : r ≤ ‖x‖C ≤ R}. From Lemma 2.3, we see that A has a fixed point u∗ on

Kr,R. And (u∗,
∫ 1

0
G(t, s)g(s, u∗)ds) is a positive solution of BVPs (4). ¤

Theorem 3.2. Let cone P be normal and conditions (H1), (H4), (H5) be
satisfied. Then BVPs (4) has at least one positive solution.

Proof. The proof is along the lines of that of Theorem 3.1.
Firstly, from (H5), there exists δ1 > 0, such that

φ(f(t, u)) ≥ M2φ(u), ∀u ∈ P, ‖u‖ ≤ δ1, t ∈ [ 14 ,
3
4 ],

φ(g(t, u)) ≥ M2φ(u), ∀u ∈ P, ‖u‖ ≤ δ1, t ∈ [ 14 ,
3
4 ],

(28)

where

M2 > (λ
3
2

∫ 3
4

1
4

G(s, s)ds)−1. (29)

In view of that g(t, θ) ≡ θ and g is continuous, we know that there exists a
constant δ′1 ∈ (0, δ1), such that when ‖u‖ ≤ δ′1, we have ‖g(t, u(t))‖ ≤ δ1

M .
Together with Lemma 2.4, we get

‖
∫ 1

0

G(t, s)g(s, u(s))ds‖ ≤ M‖g(t, u(t))‖ ≤ δ1. (30)

For any r ∈ (0, δ′1), we are going to verify that

Au 6≤ u for any u ∈ K, ‖u‖C = r. (31)

Indeed, suppose by contradiction that there exists u3 ∈ K with ‖u3‖C = r, such
that Au3 ≤ u3. Then, by (9),(28),(30), Lemma 2.4 and Lemma 2.6, we have

φ(u3(t0)) ≥ φ(Au3(t0)) =
∫ 1

0
G(t0, s)φ(f(s,

∫ 1

0
G(s, τ)g(τ, u3(τ))dτ))ds

≥ λ2M2
2

∫ 3
4
1
4

G(τ, τ)dτ
∫ 3

4
1
4

G(t0, s)ds · φ(u3(t0))

≥ λ(λM2

∫ 3
4
1
4

G(s, s)ds)2 · φ(u3(t0)).

where t0 ∈ [ 14 ,
3
4 ] is given. Observing φ(u3(t0)) > 0, we can conclude

λ(λM2

∫ 3
4

1
4

G(s, s)ds)2 ≤ 1,

which contradicts with (29). Therefore (31) is true.
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Next, from (H4) and f(t, θ) ≡ θ, g(t, θ) ≡ θ, there exists a R2 > 0 such that

‖f(t, u)‖ ≤ ε2‖u‖, ∀u ∈ P, ‖u‖ ≥ R2, t ∈ I,
‖g(t, u)‖ ≤ ε2‖u‖, ∀u ∈ P, ‖u‖ ≥ R2, t ∈ I,

(32)

where ε22 ∈ (0, (NM2)−1), that is

0 < NM2ε21 < 1. (33)

From that f, g are uniformly continuous and bounded on I × P ∩ TR2
, we get

supt∈I,u∈P∩TR2
‖f(t, u)‖ = b1 < +∞

supt∈I,u∈P∩TR2
‖g(t, u)‖ = b2 < +∞.

(34)

It follows from (32) and (34) that

‖f(t, u)‖ ≤ ε2‖u‖+ b1, ∀ u ∈ P, t ∈ I
‖g(t, u)‖ ≤ ε2‖u‖+ b2, ∀ u ∈ P, t ∈ I.

(35)

Taking R > max{R2,
NM2ε2b2+NMb1

1−NM2ε22
}, we now prove that

Au 6≥ u, for any u ∈ K, ‖u‖C = R. (36)

Indeed, suppose by contradiction that there exists u4 ∈ K with ‖u4‖C = R, such
that Au4 ≥ u4. From (9), Lemma 2.4, we get

θ ≤ u4(t) ≤ (Au4)(t) =
∫ 1

0
G(t, s)f(s,

∫ 1

0
G(s, τ)g(τ, u4(τ))dτ)ds

≤ M
∫ 1

0
f(s,

∫ 1

0
G(s, τ)g(τ, u4(τ))dτ)ds. (37)

Hence, by virtue of (33),(35),(37) and the cone P being normal, we obtain

‖u4(t)‖ ≤ NM‖ ∫ 1

0
f(s,

∫ 1

0
G(s, τ)g(τ, u4(τ))dτ)ds‖

≤ NM
∫ 1

0
‖f(s, ∫ 1

0
G(s, τ)g(τ, u4(τ))dτ)‖ds

≤ NM‖f(s, ∫ 1

0
G(s, τ)g(τ, u4(τ))dτ)‖

≤ NM(ε2‖
∫ 1

0
G(s, τ)g(τ, u4(τ))dτ‖+ b1)

≤ NM(ε2M‖g(t, u4(t))‖+ b1)
≤ NM(ε2M(ε2‖u4(t)‖+ b2) + b1)
≤ NM(ε2M(ε2‖u4(t)‖C + b2) + b1)
≤ NM(ε2M(ε2R+ b2) + b1)
≤ NM2ε22R+NM2ε2b2 +NMb1)
< R,

which contradicts with ‖u4‖C = R. Thus (36) is true.
By (31) and (36), we showed that the condition (i) of Lemma 2.3 is satisfied.
Finally, by Lemma 3.1 and (10), A is a strict-set-contraction on Kr,R = {x ∈

K : r ≤ ‖x‖C ≤ R}.
From Lemma 2.3, we see that A has a fixed point u∗ on Kr,R. And (u∗,

∫ 1

0
G(t, s)g(s, u∗)ds) is a positive solution of BVPs (4). ¤
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4. The multiplicity of positive solutions

(H6) There exists η0, η′0 > 0, such that

supt∈I,u∈P∩Tη0
‖g(t, u)‖ ≤ η′0,

supt∈I,u∈P∩TMη′
0

‖f(t, u)‖ < η0

NM ; (38)

(H7) There exist constants η1 > 0,and φ ∈ P ∗, φ(u) > 0, for any u > θ, such
that

inft∈[ 14 ,
3
4 ],u∈K,‖u‖C=η′

1

φ(f(t,u))
φ(u) ≥ M ′

0,

inft∈[ 14 ,
3
4 ],u∈K,‖u‖C=η1

φ(g(t,u))
φ(u) ≥ M0,

(39)

whereK = {u ∈ Q : u(t) ≥ λu(s), t ∈ [ 1
4
, 3
4
], s ∈ I}, η′

1 = ‖
∫ 1

0
G(t, s)g(s, u(s))ds‖C ,

and

M0M
′
0 > [λ3(

∫ 3
4

1
4

G(s, s)ds)2]−1. (40)

Theorem 4.1. Let cone P be normal and conditions (H1), (H3), (H5), (H6)
be satisfied. Then BVPs (4) has at least two positive solutions.

Proof. As (25), (31) stated in the proof of Theorem 3.1 and Theorem 3.2, re-
spectively. For the η0 stated in the assumption (H6) we can choose r,R with
R > η0 > r > 0 such that

Au 6≤ u for any u ∈ K, ‖u‖C = R, (41)

Au 6≤ u for any x ∈ K, ‖u‖C = r. (42)

Now, we are in position to prove that

Au 6≥ u for any u ∈ K, ‖u‖C = η0. (43)

Indeed, suppose by contradiction that there exists u5 ∈ K with ‖u5‖C = η0,
such that Au5 ≥ u5. From (9), Lemma 2.4, we get

θ ≤ u5(t) ≤ (Au5)(t) =
∫ 1

0
G(t, s)f(s,

∫ 1

0
G(s, τ)g(τ, u5(τ))dτ)ds

≤ M
∫ 1

0
f(s,

∫ 1

0
G(s, τ)g(τ, u5(τ))dτ)ds. (44)

From (38), Lemma 2.4, we can get

‖
∫ 1

0

G(t, s)g(s, u5(s))ds‖ ≤ M‖g(t, u5(t))‖ ≤ Mη′0. (45)

Hence, by virtue of (38),(44),(45) and the cone P being normal, we have

‖u5(t)‖ ≤ NM‖ ∫ 1

0
f(s,

∫ 1

0
G(s, τ)g(τ, u5(τ))dτ)ds‖

≤ NM‖f(s, ∫ 1

0
G(s, τ)g(τ, u5(τ))dτ)‖

< η0.

So, ‖u5‖C < η0, which contradicts with ‖u5‖C = η0. Thus (43) is true.



1456 Jianxin Cao, Haibo Chen and Jin Deng

By Lemma 3.1 and (10), A is a strict-set-contraction on Kη0,R = {u ∈ K :
η0 ≤ ‖u‖C ≤ R}, and on Kr,η0

= {u ∈ K : r ≤ ‖u‖C ≤ η0}. Observing
(41),(42),(43), and applying Lemma 2.3 to A,Kη0,R and A,Kr,η0 , respectively,
we assert that there exist u∗

1 ∈ Kη0,R and u∗
2 ∈ Kr,η0

such that Au∗
1 = u∗

1

and Au∗
2 = u∗

2. And (u∗
1,
∫ 1

0
G(t, s)g(s, u∗

1)ds), (u
∗
2,
∫ 1

0
G(t, s)g(s, u∗

2)ds) are two
positive solutions of BVPs (4). ¤

Theorem 4.2. Let cone P be normal and conditions (H1), (H2), (H4), (H7)
hold. Then BVPs (4) has at least two positive solutions.

Proof. As (19), (36) stated in the proof of Theorem 3.1 and Theorem 3.2, re-
spectively. For the η1 stated in the assumption (H7) we can choose r,R with
R > η1 > r > 0 such that

Au 6≥ u for any x ∈ K, ‖u‖C = r. (46)

Au 6≥ u for any u ∈ K, ‖u‖C = R, (47)

Now, we are in position to prove that

Au 6≤ u for any u ∈ K, ‖u‖C = η1. (48)

Indeed, suppose by contradiction that there exists u6 ∈ K with ‖u6‖C = η1,
such that Au6 ≤ u6.

For v(t) =
∫ 1

0
G(t, s)g(s, u(s))ds, similarly to Lemma 2.6, we can show that

v(t) ≥ λv(s), ∀t ∈ [
1

4
,
3

4
], s ∈ I,

that is, v(t) =
∫ 1

0
G(t, s)g(s, u(s))ds ∈ K. From (9), (39), Lemma 2.4, we get

φ(u6(t0)) ≥ φ(Au6(t0)) =
∫ 1

0
G(t0, s)φ(f(s,

∫ 1

0
G(s, τ)g(τ, u6(τ))dτ))ds

≥ λ2M0M
′
0

∫ 3
4
1
4

G(τ, τ)dτ
∫ 3

4
1
4

G(t0, s)ds · φ(u6(t0))

≥ M0M
′
0λ

3(
∫ 3

4
1
4

G(s, s)dτ)2 · φ(u6(t0)).
(49)

where t0 ∈ [ 14 ,
3
4 ] is given. Observing φ(u6(t0)) > 0, we can conclude

M0M
′
0λ

3(

∫ 3
4

1
4

G(s, s)dτ)2 ≤ 1,

which contradicts with (40). Thus (48) is true.
By Lemma 3.1 and (10), A is a strict-set-contraction on Kη1,R = {u ∈ K :

η1 ≤ ‖u‖C ≤ R} and on Kr,η1 = {u ∈ K : r ≤ ‖u‖C ≤ η1}. From (10),
(46), (47), (48), and Lemma 2.3, we assert that there exist u∗

1 ∈ Kη1,R and

u∗
2 ∈ Kr,η1 such that Au∗

1 = u∗
1 and Au∗

2 = u∗
2. And (u∗

1,
∫ 1

0
G(t, s)g(s, u∗

1)ds),

(u∗
2,
∫ 1

0
G(t, s)g(s, u∗

2)ds) are two positive solutions of BVPs (4). ¤
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5. Two examples

Now, we consider two examples to illustrate our results.

Example 5.1. Averting the complex calculation of the measure of noncom-
pactness, we consider the boundary value problems in E = Rn (n-dimensional
Euclidean space and ‖x‖ =

∑n
i=1 x

2
i )





−u′′
i (t) = fi(t, v1, v2, . . . , vn), t ∈ (0, 1),

−v′′i (t) = gi(t, u1, u2, . . . , un), t ∈ (0, 1),
ui(0) =

1
2u

′
i(0),

1
2ui(

1
2 ) = ui(1),

vi(0) =
1
2v

′
i(0),

1
2vi(

1
2 ) = vi(1), i = 1, 2, . . . , n.

(50)

where

fi(t, v1, v2, . . . , vn) = ρ1(
√
vi+1 sinπt+ [exp (v2i+2)− 1]t3), i = 1, 2, . . . , n− 2,

fn−1(t, v1, v2, . . . , vn) = ρ1(
√
vn sinπt+ [exp (v21)− 1]t3),

fn(t, v1, v2, . . . , vn) = ρ1(
√
v1 sinπt+ [exp (v22)− 1]t3),

gi(t, u1, u2, . . . , un) = ρ2((2− sinπt)
√
ui+1 + u2

i+2), i = 1, 2, . . . , n− 2,
gn−1(t, u1, u2, . . . , un) = ρ2((2− sinπt)

√
un + u2

1),
gn(t, u1, u2, . . . , un) = ρ2((2− sinπt)

√
u1 + u2

2),

and

ρ21 = 2
45n < 2

5ne2 ,
ρ22 = 1

23n .
(51)

We can conclude that BVPs (50) has at least two positive solutions.
In fact, the BVPs (50) can be regarded as a BVPs of the form (4) in E. In

this situation, I = [0, 1], θ = (0, 0, . . . , 0) ∈ Rn, α = 1
2 , β = 1

2 , η = 1
2 , f =

(f1, f2, . . . , fn), g = (g1, g2, . . . , gn). Then ρ = 1, M = 5
2 , λ = 1

3 , f : I × P →
P, g : I × P → P are continuous and non-negative on I, where

P = {u = ((u1, u2, . . . , un)) ∈ Rn : ui ≥ 0, i = 1, 2, . . . , n}. (52)

Obviously P is a normal cone with normal constant N = 1 and P ∗ = P . We can
easily prove that the conditions (H1), (H3), (H5) of Theorem 4.1 hold. Choosing
φ = (1, 1, . . . , 1), we are going to prove that (H6) hold. In fact, taking η0 =
1, η′0 = 2

5 , we have

supt∈I,u∈P∩Tη0
‖g(t, u)‖

= supt∈I,u∈P,‖u‖C=1[
∑n−1

i=1 (ρ2((2− sinπt)
√
ui + u2

i+1))
2

+(ρ2((2− sinπt)
√
un + u2

1))
2]

≤ ρ229n ≤ 2
5 = η′0 ( observing (51)).
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Thus Mη′0 = 1 and

supt∈I,u∈P∩TMη′
0

‖f(t, u)‖
= supt∈I,u∈P∩TMη′

0

{∑n−2
i=1 ρ21(

√
vi+1 sinπt+ [exp (v2i+2)− 1]t3)2

+ρ21(
√
vn sinπt+ [exp (v21)− 1]t3)2

+ρ21(
√
v1 sinπt+ [exp (v22)− 1]t3)2}

≤ ρ21ne
2 < 2

5 = η0

NM ( observing (51)),

which implies that condition (H6) holds. By Theorem 4.1, the BVPs (50) has
at least two positive solutions.

Example 5.2. Consider the boundary value problems still in E = Rn.




−u′′
i (t) = fi(t, v1, v2, . . . , vn), t ∈ (0, 1),

−v′′i (t) = gi(t, u1, u2, . . . , un), t ∈ (0, 1),
ui(0) =

1
2u

′
i(0),

1
2ui(

1
2 ) = ui(1),

vi(0) =
1
2v

′
i(0),

1
2vi(

1
2 ) = vi(1), i = 1, 2, . . . , n.

(53)

where

fi(t, v1, v2, . . . , vn) = ξ(2− sinπt)e−max1≤i≤n viv2i , i = 1, 2, . . . , n− 1,
fn(t, v1, v2, . . . , vn) = ξ(2− sinπt)e−max1≤i≤n viv21 ,
gi(t, u1, u2, . . . , un) = (2− t)e−max1≤i≤n uiu2

i , i = 1, 2, . . . , n− 1,
gn(t, u1, u2, . . . , un) = (2− t)e−max1≤i≤n uiu2

1,

and

ξ = 1186n2e10n+1 >
527 · 9n2e10n+1

4
. (54)

We can conclude that BVPs (53) has at least two positive solutions.
In fact, the BVPs (53) can be regarded as a BVPs of the form (4) in E.

In this situation, I = [0, 1], θ = (0, 0, . . . , 0) ∈ Rn, α = 1
2 , β = 1

2 , η =
1
2 , f = (f1, f2, . . . , fn), g = (g1, g2, . . . , gn). Then ρ = 1, M = 5

2 , λ = 1
3 ,

f : I × P → P, g : I × P → P are continuous and non-negative on I, where P
is defined by (52). Moreover, we have

[λ3(

∫ 3
4

1
4

G(s, s)ds)2]−1 ≈ 526. (55)

We can easily prove that the conditions (H1), (H2), (H4) of Theorem 4.2 hold.
Choosing φ = (1, 1, . . . , 1), we are in position to prove that (H7) hold. As in the

proof of Theorem 4.2, for u ∈ K, v(t) =
∫ 1

0
G(t, s)g(s, u(s))ds ∈ K, we can get

mint∈[ 14 ,
3
4 ]
‖u(t)‖ ≥ λη1

N ,

mint∈[ 14 ,
3
4 ]
‖v(t)‖ ≥ λη′

1

N ,
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therefore

‖ ∫ 1

0
G(t, s)g(s, u(s))ds‖ ≤ M‖g(s, u(s)‖

≤ M
∑n

1 (2− t)2e−max1≤i≤n uiu4
i

≤ M
∑n

1 4u
4
i

≤ M4n = 10n,

that is,

η′1 ≤ 10n. (56)

By (56), we have

inft∈[ 14 ,
3
4 ],u∈K,‖u‖C=η′

1

φ(f(t,u))
φ(u)

= inft∈[ 14 ,
3
4 ],u∈K,‖u‖C=η′

1

∑n

i=1
ξ(2−sinπt)e

−max1≤i≤n uiu2
i∑n

i=1
ui

≥ 2ξe−10n

3n := M ′
0.

(57)

Similarly, taking η1 = 1, we get

inft∈[ 14 ,
3
4 ],u∈K,‖u‖C=1

φ(g(t,u))
φ(u)

= inft∈[ 14 ,
3
4 ],u∈K,‖u‖C=1

∑n

i=1
(2−t)e

−max1≤i≤n uiu2
i∑n

i=1
ui

≥ 2
3en := M0.

(58)

By (54), (55), (57), (58), we obtain

M0M
′
0 =

2

3en
· 2ξe

−10n

3n
=

4ξ

9n2e10n+1
> 527 > [λ3(

∫ 3
4

1
4

G(s, s)ds)2]−1,

which implies that condition (H7) holds. By Theorem 4.2, the BVPs (53) has
at least two positive solutions.
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