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CONVEXITY AND SEMICONTINUITY OF FUZZY

MAPPINGS USING THE SUPPORT FUNCTION

DUG HUN HONG∗, EUNHO L. MOON, JAE DUCK KIM

Abstract. Since Goetschel and Voxman [5] proposed a linear order on
fuzzy numbers, several authors studied the concept of semicontinuity and
convexity of fuzzy mappings defined through the order. Since the order is
only defined for fuzzy numbers on R, it is natural to find a new order for
normal fuzzy sets on Rn in order to study the concept of semicontinuity
and convexity of fuzzy mappings on normal fuzzy sets. In this paper, we
introduce a new order ”¹s” for normal fuzzy sets on Rn with respect to
the support function. We define the semicontinuity and convexity of fuzzy
mappings with this order. Some issues which are related with semiconti-
nuity and convexity of fuzzy mappings will be discussed..
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1. Introduction

Since Zadeh [22] first proposed the idea of a fuzzy set, thousands of papers on
fuzzy sets and related themes have appeared. The idea of fuzzy convexity goes
back to Zadeh [22]. Nguyen [11] exploited the idea of fuzzy numbers without
using normality, which was introduced by Puri and Ralescu [12]. Level sets were
first comprehensively used by Mizumoto and Tanaka [9]. Support functions have
long been used in the theory of convex analysis. The first application to fuzzy set
theory was seen in Puri and Ralescu’s paper [13]. The function space metric was
discussed in Gottwald [6]. Kloeden [8] first intorduced the sendograph metric
and it was used for fuzzy numbers by Goestschel and Voxman [4]. It is recorded
that d∞ metric was first used by Heilpern [7]. Puri and Ralescu [13] exploited
its metric properties in a metric space context, and introduced the isometrical
embedding.
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Since Goetschel and Voxman [5] proposed a linear ordering ¹ on fuzzy num-
bers which is called ”fuzzy-max” order, the concept of convex fuzzy mappings
defined through the ”fuzzy-max” order were studied by several authors, includ-
ing Furukawa [3], Nanda [10], Syau [14, 15], Syau and Lee [16], Wu and Xu
[18], Yan and Xu [19], and Wang and Wu [17]. The concept of upper and lower
semicontinuity of fuzzy mapping based on the Hausdorff separation was intro-
duced by Diamond and Kloeden [2]. Recently, Bao and Wu [1] introduced a
new concept of upper and lower semicontinuity of fuzzy mappings through the
”fuzzy-max” order on fuzzy numbers.

Since the ”fuzzy-max” order is only defined for fuzzy numbers on R, we need
to find new order for normal fuzzy sets on Rn in order to study the concept
of semicontinuity and convexity of fuzzy mappings on normal fuzzy sets on Rn.
In this paper, we introduce a new order on the set of normal fuzzy sets with
respect to the support function. And we study the concept of semicontinuity and
convexity of fuzzy mapping on fuzzy normal sets. Since the new order is different
from ”fuzzy-max” order(Example 1), we define convexity and semicontinuity of
fuzzy mappings on fuzzy normal sets through the order in section 3. We will
show some properties of convexity and semicontinuity of fuzzy mappings and
some other issues will be discussed in section 4.

2. Preliminaries

In this section, we briefly recall some of the basic notations in the theory of
fuzzy sets.

A fuzzy subset of Rn is defined in terms of a membership function which
assigns to each point x ∈ Rn a grade of membership in the fuzzy set. Such a
membership function

u : Rn → I = [0, 1]

is used synonomously to denote the corresponding fuzzy set. Denote by Fn the
set of all fuzzy sets on Rn.

For each α ∈ (0, 1] the α-level set [u]α of a fuzzy set u is the subset of points
x ∈ Rn with membership grade u(x) of at least α, that is,

[u]α = {x ∈ Rn : u(x) ≥ α}.
The support [u]0 of a fuzzy set is then defined as the closure of the union of all
its level sets, that is

[u]0 =
⋃

α∈(0,1]

[u]α.

We recall the definition of a normal fuzzy set.

Definition 1. ([2]) Let u ∈ Fn. Then u is a normal fuzzy set if it satisfies
following assumptions;



Convexity and semicontinuity of fuzzy mappings using the support function 1421

(1) u maps Rn onto I;
(2) [u]0 is a bounded subset of Rn;
(3) u is upper semicontinuous;
(4) u is fuzzy convex.

We denote En the space of all normal fuzzy subsets u of Fn

Note. If n = 1 then a normal fuzzy subset u ∈ E∞ is a fuzzy number.

The space En can be endowed with an inner composition law which is the
extension of the Minkowski addition between sets, and an external composition
which is the product by a scalar. These two laws are compatible with the ones
obtained by applying Zadeh’s extension principle. Thus for all u, v ∈ En and
λ ∈ R, u + v and λu can be defined as the unique fuzzy sets so that for all
α ∈ [0, 1]

[u+ v]α = [u]α + [v]α = {x+ y|x ∈ [u]α, y ∈ [v]α}
[λu]α = λ[u]α = {λx|x ∈ [u]α}

In order to introduce the support function of fuzzy sets in En, we recall the
concept of support function of a nonempty compact convex subset of Rn. Let A
be a nonempty subset of Rn. The support fucntion of A is defined by

s(p,A) = sup{< p, a >: a ∈ A}, for all p ∈ Rn.

We denote by KCn the set of all nonempty compact convex subset of Rn. The
support function s(p,A) is uniquely paired to subset A in KCn. It also preserves
set addition and nonnegative scalar multiplication. That is, for all p ∈ Rn and
for all t ≥ 0,

s(p,A+B) = s(p,A) + s(p,B), s(p, tA) = ts(p,A)

Moreover for all A,B ∈ KCn,

dH(A,B) = sup{‖s(p,A)− s(p,B)‖ : p ∈ Sn−1}

Definition 2. ([2]) Let u ∈ En. The support function of u is su : I ×Sn−1 → R
defined by

su(α, p) = s(p, [u]α) = sup{< p, a >: a ∈ [u]α}
for (α, p) ∈ I × Sn−1, where s(·, [u]α) is the support function of [u]α.

Moreover, for u, v ∈ En and λ ≥ 0

u = v if and only if su = sv

Since the support function on KCn uniquely characterizes the elements of KCn,

su+v = su + sv, sλu = λsu.
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Definition 3. ([7]) The supremum metric d∞ on En is defined by

d∞(u, v) = sup{dH([u]α, [v]α) : α ∈ [0, 1]} for u, v ∈ E\

where

dH([u]α, [v]α) = sup{|su(α, x)− sv(α, x)| : (α, x) ∈ [0, 1]× Sn−1}

We now define the continuity of mappings between metric spaces.

Definition 4. A fuzzy mapping F : C → En is said to be continuous at a0 ∈ C
if for all ε > 0, there exists δ > 0 such that

d∞(F (a), F (a0)) < ε whenever a ∈ C ∩Bδ(a0).

F is continuous if it is continuous at each point of C.

We recall the definitions of upper and lower semicontinuous real-valued func-
tions.

Definition 5. A real-valued function f : S → Rn is said to be

(1) upper semicontinuous at x0 ∈ S if given ε > 0, there exists a δ > 0 such
that

f(x) < f(x0) + ε whenever x ∈ S ∩Bδ(x0).

f is upper semicontinuous on S if it is upper semicontinuous at each
point of S.

(2) lower semicontinuous at x0 ∈ S if given ε > 0, there exists a δ > 0 such
that

f(x) > f(x0)− ε whenever x ∈ S ∩Bδ(x0).

f is lower semicontinuous on S if it is lower semicontinuous at each point
of S.

We now recall two important results concerning convex functions.

Theorem 1. ([20]) Let C be a non-empty convex subset of Rn, and let f : C →
R1 be a lower semicontinuous function. If for all a, b ∈ C, there exists λ ∈ (0, 1)
such that

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b),

then f is a convex function on C.
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Theorem 2. ([21]) Let C be a non-empty convex subset of Rn, and let f : C →
R1 be an upper semicontinuous function. If there exists λ ∈ (0, 1) such that

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b), ∀a, b ∈ C,

then f is a convex function on C.

3. Semicontinuity and convexity of fuzzy mappings on En

Goetschel and Voxman [5] proposed a linear ordering ”¹” on fuzzy numbers
which is called ”fuzzy-max” order and several authors studied the concept of
convex and semicontinuous fuzzy mappings defined through the ”fuzzy-max”
order. Since ”fuzzy-max” order is only defined on E1, it is natural to find a
new order on En in order to study the concept of semicontinuity and convexity
of fuzzy mapping on En. Since the support function uniquely characterizes the
element of En, we define the order on En with respect to the order of support
function.

Definition 6. Let u, v ∈ En be normal fuzzy subsets whose support functions
are su and sv, respectively. Then we say that u ¹s v if

su(α, x) ≤ sv(α, x) for each (α, x) ∈ [0, 1]× Sn−1.

We see that u = v if u ¹s v and u ¹s v. Moreover u ≺s v if u ¹s v and there
exists (α0, x0) ∈ [0, 1]× Sn−1 such that su(α0, x0) < sv(α0, x0).

The following example shows that the order ”¹s” is different to ”fuzzy-max”
order.

Example 1. Let u, v ∈ E∞ have level set

[u]α = [u(α), u(α)], [v]α = [v(α), v(α)], ∀α ∈ [0, 1].

Then, as S0 = {−1, 1}, the support function su, sv are given by

Su(α,−1) = −u(α), Su(α, 1) = u(α),

and

Sv(α,−1) = −v(α), Sv(α, 1) = v(α), for all α ∈ [0, 1]

Hence if u ¹s v then

u(α) ≥ v(α) and u(α) ≤ v(α), for all α ∈ [0, 1]

This does not mean u ¹ v. In fact u ¹s v means that [v]α contains [u]α for each
α ∈ [0, 1].
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Example 2. For ε > 0, let ε̃ ∈ En where

ε̃(x) =

{
1 if |x| ≤ ε

0 otherwise.

Then the support function of ε̃ is a constant function. In fact, s
ε̃
= ε.

Note. From Example 2 we can get a normal fuzzy set corresponding to a positive
real number, but such normal fuzzy sets are restricted. Thus we give Definition
7.

Definition 7. A normal fuzzy set u in En is called a positive normal fuzzy set
if 0 ∈ Int[u]1. Denote by

E+ = {u ∈ En| u is a positive normal fuzzy set}

Lemma 1. A positive normal fuzzy set has a positive support function.

Proof. If u ∈ E+ then 0 ∈ Int[u]1. Hence there exists ε > 0 such that Bε(0) is
contained in Int[u]1. Since [u]1 is closed, Bε(0) is also contained in [u]1. Thus
su(α, x) ≥ s

ε̃
(α, x) = ε by Definition 7 This completes the proof. ¤

We now define semicontinuity and convexity of a fuzzy mappings in the sense
of the order ”¹s” by using Definition 6 and 7.

Definition 8. A fuzzy mapping F : C → En is said to be

(1) upper semicontinuous at a0 ∈ C if for all u ∈ E+, there exists δ > 0 such
that

F (a) ¹s F (a0) + u whenever a ∈ C ∩Bδ(a0).

F is upper semiconinuous if it is upper semicontinuous at each point of
C.

(2) lower semiconinuous at a0 ∈ C if for all u ∈ E+, there exists δ > 0 such
that

F (a0) ¹s F (a) + u whenever a ∈ C ∩Bδ(a0).

F is lower semiconinuous if it is lower semicontinuous at each point of
C.

Definition 9. Let C be a non-empty convex subset of Rn. A fuzzy mapping
F : C → En is said to be convex if for every λ ∈ [0, 1] and a, b ∈ C,

F (λa+ (1− λ)b) ¹s λF (a) + (1− λ)F (b).
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4. The properties of fuzzy mappings on En

In Section 3 we defined a new order on En and introduced the concepts of
semicontinuity and convexity of fuzzy mappings on En. In this section we will
find the properties of fuzzy mappings on En.

Theorem 3. Let F : C → En be a fuzzy mapping and ε̃ be in En defined by

ε̃(x) =

{
1 if |x| ≤ ε

0 otherwise.

Then

(1) F is upper semicontinuous at a0 in C if and only if for all ε > 0 there
exists δ > 0 such that

F (a) ¹s F (a0) + ε̃ whenever a ∈ C ∩Bδ(a0).

(2) F is lower semicontinuous at a0 in C if and only if for all ε > 0 there
exists δ > 0 such that

F (a0) ¹s F (a) + ε̃ whenever a ∈ C ∩Bδ(a0).

Proof. (1) Suppose that F is upper semicontinuous at a0 in C. Let ε > 0
be given. Since ε̃ is in E+, there exists δ > 0 such that

F (a0) ¹s F (a) + ε̃ whenever a ∈ C ∩Bδ(a0).

Conversely, if u in E+ then there exist ε > 0 such that

su(α, x) ≥ s
ε̃
(α, x) = ε

by Lemma 1. Hence there exists δ > 0 such that

F (a0) ¹s F (a) + ε̃ ¹s F (a) + u whenever a ∈ C ∩Bδ(a0).

It completes the proof.
(2) It is similar to (1).

¤

By using Theorem 3 we will show the semicontinuity of a fuzzy mapping.
First of all, we wlll see the the relationship between a fuzzy mapping and a
support function.

Theorem 4. Let F : C → En be a fuzzy mapping, and for each a ∈ C let sF (a)

be a support function of F (a). Then the following conditions are equivalent;

(1) F is upper semicontinuous at a0 ∈ C.
(2) sF (a) is upper semicontinuous at a0 uniformly in (α, x) ∈ [0, 1]× Sn−1.
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Proof. If (1) holds then by Theorem 3, for each ε > 0, there exists a δ > 0 such
that

F (a) ¹s F (a0) + ε̃ whenever a ∈ C ∩Bδ(a0).

By Definition 6, for each (α, x) ∈ [0, 1]× Sn−1,

sF (a)(α, x) ≤ sF (a0)(α, x) + s
ε̃
(α, x).

It means that for each a ∈ C ∩Bδ(a0),

sF (a)(α, x) ≤ sF (a0)(α, x) + ε, ∀(α, x) ∈ [0, 1]× Sn−1.

Hence sF (a) is upper semicontinuous at a0 uniformly in (α, x) ∈ [0, 1] × Sn−1.
Since it holds in the reverse order, this completes the proof.

¤

Theorem 5. Let F : C → En be a fuzzy mapping, and for each a ∈ C let sF (a)

be a support function of F (a). Then the following conditions are equivalent;

(1) F is lower semicontinuous at a0 ∈ C.
(2) sF (a) is lower semicontinuous at a0 uniformly in (α, x) ∈ [0, 1]× Sn−1.

Proof. It is similar to Theorem 4. ¤

Theorem 6. Let C be a non-empty convex subset of Rn and let F : C → En

be a fuzzy mapping. Then F is convex on C if and only if for each (α, x) ∈
[0, 1]× Sn−1, sF (a) is convex with respect to a on C.

Proof. Assume that for each (α, x) ∈ [0, 1]× Sn−1, sF (a) is convex with respect

to a on C. Let (α, x) ∈ [0, 1]× Sn−1 be given. Then

sF (λa+(1−λ)b)(α, x) ≤ λsF (a)(α, x) + (1− λ)sF (b)(α, x)

for all a, b ∈ C and λ ∈ [0, 1]. Then

F (λa+ (1− λ)b) ¹s λF (a) + (1− λ)F (b)

for all a, b ∈ C and λ ∈ [0, 1]. Hence F is convex on C.
Conversely, let F be convex on C. Then for every a, b ∈ C and λ ∈ [0, 1], we

have

F (λa+ (1− λ)b) ¹s λF (a) + (1− λ)F (b)

From Definition 6, we have

sF (λa+(1−λ)b)(α, x) ∈ [0, 1]× Sn−1 ≤ λsF (a)(α, x) + (1− λ)sF (b)(α, x)

for all a, b ∈ C and λ ∈ [0, 1]. Hence we can conclude that for each (α, x) ∈
[0, 1]× Sn−1, sF (a) is convex with respect to a on C.

This completes the proof. ¤
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Theorem 7. Let C be a non-empty convex subset of Rn, and let F : C → En

be a lower semicontinuous fuzzy mapping. If for all a, b ∈ C, there exists a
λ ∈ (0, 1) such that

F (λa+ (1− λ)b) ¹s λF (a) + (1− λ)F (b) (1)

then F is a convex fuzzy mapping on C.

Proof. (a) Since F is lower semicontinuous, by Theorem 5, we have sF (a) is lower

semicontinuous at a ∈ C uniformly in (α, x) ∈ [0, 1]× Sn−1.
(b) In view of (1) and Definition 6, it can be written as for all a, b ∈ C, there

exists a λ ∈ (0, 1) such that

sF (λa+(1−λ)b)(α, x) ≤ λsF (a)(α, x) + (1− λ)sF (b)(α, x)

for all (α, x) ∈ [0, 1] × Sn−1. Combining (a),(b) and Theorem 1, we have sF (a)

is convex with respect to a on C. That is for all a, b ∈ C and λ ∈ [0, 1]

sF (λa+(1−λ)b)(α, x) ≤ λsF (a)(α, x) + (1− λ)sF (b)(α, x)

This means

F (λa+ (1− λ)b) ¹s λF (a) + (1− λ)F (b)

for for all a, b ∈ C and λ ∈ [0, 1]. Hence F is convex by Definition 9.
¤

Similarly, by Theorems 2 and 4, we obtain an analogous result to Theorem 7
for the case of upper semicontinuous fuzzy mappings:

Theorem 8. Let C be a non-empty convex subset of Rn, and let F : C → En

be a upper semicontinuous fuzzy mapping. If there exists a λ ∈ (0, 1) such that

F (λa+ (1− λ)b) ¹s λF (a) + (1− λ)F (b) ∀a, b ∈ C

then F is a convex fuzzy mapping on C.

A real valued function is continuous if and only if upper semicontinuous and
lower semicontinuous. Thus we will show that it holds on fuzzy mappings in the
sense of Definition 4 and 8.

Theorem 9. Let F : C → En be a fuzzy mapping. F is upper semicontinuous
and lower semicontinuous if and only if F is continuous.

Proof. Suppose that F is upper semicontinuous and lower semicontinuous. Let
a0 ∈ C and ε > 0 be given. By Theorem 3 there exists δ > 0 such that

F (a) ¹s F (a0) + ε̃ and F (a0) ¹s F (a) + ε̃, ∀a ∈ C ∩Bδ(a0).

This implies for all a ∈ C ∩Bδ(a0)

sF (a)(α, x) ≤ sF (a0)(α, x) + ε and sF (a0)(α, x) ≤ sF (a)(α, x) + ε
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And so
|sF (a)(α, x)− sF (a0)(α, x)| ≤ ε, ∀a ∈ C ∩Bδ(a0)

Hence
d∞(F (a), F (a0)) ≤ ε, ∀a ∈ C ∩Bδ(a0)

By Definition 4, F is continuous at a0.
Conversely, suppose that F is continuous at a0. Let a0 ∈ C and ε > 0 be

given. Then there exists δ > 0 such that

d∞(F (a), F (a0)) ≤ ε, ∀a ∈ C ∩Bδ(a0)

It means

F (a) ¹s F (a0) + ε̃ and F (a0) ¹s F (a) + ε̃, ∀a ∈ C ∩Bδ(a0).

This completes the proof.
¤

We observe the property of a sequence of convex fuzzy mappings.

Theorem 10. Let {Fn} be a sequence of convex fuzzy mappings. If there exists
a fuzzy map F such that {Fn} converges to F , then F is convex.

Proof. Let a, b ∈ C and λ ∈ [0, 1], ε > 0 be given. Since {Fn} converges to F ,
there exists n ∈ N such that

d∞(Fn(a), F (a)) <
ε

2
, d∞(Fn(b), F (b)) <

ε

2

and

d∞(Fn(λa+ (1− λ)b), F (λa+ (1− λ)b)) <
ε

2
By Definition 3,

|sFn(a)(α, x)− sF (a)(α, x)| < ε
2

|sFn(b)(α, x)− sF (b)(α, x)| < ε
2

|sFn(λa+(1−λ)b)(α, x)− sF (λa+(1−λ)b)(α, x)| < ε
2

(2)

for all (x, α) ∈ S1 × [0, 1].
Since Fn is convex by assumption,

Fn(λa+ (1− λ)b)) ¹s λFn(a) + (1− λ)Fn(b).

Thus, by Theorem 6, for all (α, x) ∈ [0, 1]× Sn−1

sFn(λa+(1−λ)b)(α, x) ≤ λsFn(a)(α, x) + (1− λ)sFn(b)(α, x). (3)

Also, by (2) and (3), for all (α, x) ∈ [0, 1]× Sn−1

sF (λa+(1−λ)b)(α, x)−
ε

2
< sFn(λa+(1−λ)b)(α, x)

≤ λsFn(a)(α, x) + (1− λ)sFn(b)(α, x)

< λsF (a)(α, x) + (1− λ)sF (b)(α, x) +
ε

2
.
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Therefore

sF (λa+(1−λ)b)(α, x) < sF (a)(α, x) + (1− λ)sF (b)(α, x) + ε

for all (α, x) ∈ [0, 1]× Sn−1.
Since ε is arbitrary,

sF (λa+(1−λ)b)(α, x) ≤ sF (a)(α, x) + (1− λ)sF (b)(α, x)

for all (α, x) ∈ [0, 1]× Sn−1.
It means

F (λa+ (1− λ)b)) ¹s λF (a) + (1− λ)F (b)

Thus F is convex. ¤
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