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EXISTENCE OF PERIODIC SOLUTION OF SOME

ECO-EPIDEMIOLOGICAL SYSTEMS

ZHIJUN LIU AND SAHABUDDIN SARWARDI∗

Abstract. The effect of impulse in the ecological models makes them
more realistic. Recently, the eco-epidemiological models have become an
important field of study from the both mathematical and ecological view
points. In this article, we consider some eco-epidemiological systems un-
der the influence of impulsive force. A set of sufficient conditions for the
permanence of the system are derived. Stability of the trivial solution and
at least one strictly positive periodic solution are obtained. Numerical ex-
amples are given in support to our analytical findings. Finally, a short
discussion concludes the paper.
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1. Introduction

Mathematical ecology aims at the mathematical representation, treatment
and modeling of complex ecosystems using a variety of applied mathematical
techniques and tools to get a better understanding of the system. Predator-prey
relationship plays an important role in regulating the numbers of prey and preda-
tors in complex ecosystems. A large portion of mathematical ecology is devoted
to study the predator-prey interaction after the pioneering work of Alfred James
Lotka and Vito Volterra in the mid-1920s. A lot of references are available in
the literature. We mentioned here a very few, [25], [26], and references therein.
Similarly, epidemiological models have also received great attention after the
seminal model of KermackMcKendrick on SIRS (susceptible-infective-removed-
susceptible) systems. Both theoretical and experimental investigations in these
two fields namely ecology and epidemiology progressed independently along the
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years, until the late eighties and early nineties. There are so many references in
this context; we are unable to cite all of them here, but an excellent one is [27].

Transmissible diseases can be an important factor in regulating animal pop-
ulation sizes. For instance, in 1988 the population of common seals in the Wash
(the square-mouthed estuary on the northwest margin of East Anglia on the east
coast of England) was the worst affected in the UK with almost 50 percent of
the population died as a result of the epidemic. Both common seals and grey
seals are found around the UK coast. The vast majority of both species are
found around Scotland. There are approximately 119,000 grey seals and more
than 36,000 common seals in Scottish waters. Another example would be the
Myxomatosis, which became cause of enormous decreases in the rabbit popu-
lation in Australia in the 1950s, [24]. Infectious disease can thus be a relevant
factor in regulating animal population sizes and therefore cannot be ignored in
ecological situation. Such idea has already been taken into account and became
a new field of study named as “eco-epidemiology”. Therefore, eco-epidemiology
is a young field of research. However a good number of papers have been pub-
lished in this direction for instance, [1]-[3], [16], [18]-[22]. Hadeler and Freedman
[1] have modified the Rosenzweig prey-predator model in which the predators
like to eat the infected prey compare to the uninfected prey, the predators get
infection only by eating the diseased prey, and the prey obtains the disease from
parasites spread into the environment by the predators. They also modeled a
second situation in which the predators could only survive on the prey if some of
the prey were more easily caught due to being infected. Beltrami and Carroll [2]
have investigated the effect transmissible disease in phytoplankton-zooplankton
system and observed that a small amount of infectious agent can destabilise
the otherwise stable trophic configuration between a prey species and its grazer.
Venturino [16] studied modifications of the classical LotkaVolterra prey-predator
model in which an SI or SIS disease spreads among either the prey or the preda-
tor population. Greenhalgh and Haque [20] discussed the effect of transmission
coefficient in a semi-ratio dependent predator-prey system with disease in prey
species only. Haque and Venturino [18] studied the influence of communica-
ble disease in a ratio-dependent predator-prey system with disease in predators.
Comparisons of theses findings along with the results of some related investi-
gations allow a general conclusion that an infection in either species, prey or
predator, may act as a biological control.

On the other hand, the application of impulsive differential equation in the
population dynamics is an important field of studies. The impulsive differential
equations are suitable for the evolutionary process whose states are subject to
sudden changes at certain moments. For instance, in the population ecology,
the effect of impulse makes the models more practical from the ecological point
of view since the ecological systems are often deeply perturbed by human ex-
ploit activities such as planting and harvesting. Therefore, we need to introduce
the impulsive differential equations to have a more accurate descriptions to the
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system. A significant number of investigations have been performed in this di-
rection; for example, Zhen et al. [28] studied the persistence in a LotkaVolterra
competition systems with impulsive perturbations. The study of predator-prey
system with defensive ability of prey and impulsive perturbations on the preda-
tor has been investigated in [29]. In [30], the authors have explored the existence
of periodic solutions with strictly positive components of generalized ecological
competition systems governed by impulsive differential equation with infinite de-
lays. The other references in this context are [4]-[8]. Similarly a good number of
studies have been performed to incorporate the impulsive effect on epidemiologi-
cal models, for example, [10], [11] and the references therein. In [10], the authors
have observed the effect of constant and pulse vaccination on SIR epidemic model
with horizontal and vertical transmission. Donfrio [11] has considered the case
of pulse vaccination strategy in a SIR Epidemic Model by introducing impulsive
differential equation. We do not go through more details here but the reader
could be able to find interesting results in these papers, [9]-[14].

In this study, we apply the impulsive differential equation on some important
eco-epidemiological models since the application of impulsive differential equa-
tion on both ecological and epidemiological models are well established in the
literature, [4]-[14]; but, so far we know, no attempt has been made to incorporate
the impulsive differential equation with eco-epidemic problems, except from the
papers of Haque and his collaborators, see [32] and [33]. This is one of earlier
attempts to allow eco-epidemic situations under the influence of impulsive dif-
ferential equations. Therefore, the present study will help to open a new window
for research in this direction.

2. Our assumptions and the mathematical models

2.1. Disease on competing species

Let us first consider competitive system where two predators each other, or
two species that survive in the same habitat on the same resources. For example,
the letter case could be sheep and cows grazing on the same pasture. Therefore
the classical model for the description of their interactions is

{
dP
dt = P [a− bP − cQ]
dQ
dt = Q[d− eP − fQ].

(1)

Now, assume that the disease spreads only among one of the competing species,
let us say Q. Counting only the susceptible individual by P , another susceptible
individual by Q, and infected individuals of the latter species, V . With the above
assumptions Venturino [22] has considered the following model given below





dP
dt = P [a− bP − cQ− ηV ]
dQ
dt = Q[d− eP − f(Q+ V )− δV ] + νV
dV
dt = V [δQ− gP − f(Q+ V )− ν]

(2)
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where δ is the force of infection and ν the rate of infection recovery. For the
shake of simplicity Venturino [22] assumed that ν = 0 and then studied the
mathematical properties of the system and its ecological meanings.

2.2. Predator-prey model with disease in the predator species only

Let us consider a predator-prey model where R(t) represents the number of
Rabbits and F (t) denotes the number of foxes at time t. The classical model is
given by {

dR
dt = R[a− bR− cF ]
dR
dt = R[a− bR− cF ]

(3)

Now consider the case when the disease spreads among the predators population.
To formulate the model Venturino [22] has assumed that disease spreads only
among the predators population. He denotes the sound preys by R, sound
predators by F , infected predators by V and proposed the following model




dR
dt = R[a− bR− cF − ηV ]
dF
dt = F [d+ eR− f(F + V )− δV ] + νV
dV
dt = V [δF + gR− f(F + V )− ν]

(4)

where a and d represent the growth rate of the prey and the susceptible predator
respectively. It has been assumed that the susceptible individual reproduces and
infected are unable to do so. It was also assumed that the predators population
have alternative sources of food. The parameters η means the death of the prey
by disease. The parameters η and c differ for at least two reasons: (i) η < c
is used to model the situation in which predators are less able to catch prey;
(ii) η > c denotes the fact that the hunting abilities of sick predators may be
unaffected, but prey surviving an attack may catch the disease and die of it. The
more likely situation is (i) because infected predators would not able to run as
healthy individuals do. Again g 6= e allows the situation for which the food may
be more valuable for the infected predators compared to the healthy individuals.

An alternative model for which Venturino [22] did not carry out the analysis
is given by 




dR
dt = R[a− bR− cF − ηV ],
dF
dt = F [d+ eR− f(F + V )− δV ] + (ν + h)V,
dV
dt = V [δF + gR− f(F + V )− ν].

(5)

Here the reproduction takes place also among diseased predators at a different
net rate h than for sound ones, and the offsprings are assumed to be healthy.

Another model has been proposed in which the diseased predators give birth
to susceptible offspring; for instance, it is well known that humans rubella during
pregnancy may in some cases cause malformations in children, so they do belong
to the susceptible class. Therefore the model (5) takes the form





dR
dt = R[a− bR− cF − ηV ],
dF
dt = F [d+ eR− f(F + V )− δV ] + νV,
dV
dt = V [h+ δF + gR− f(F + V )− ν].

(6)
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Now all the above eco-epidemic models can be written as follows




dy1

dt = y1[r1 − a11y1 − a12y2 − a13y3],
dy2

dt = y2[r2 − a21y1 − a22y2 − a23y3],
dy3

dt = y3[r3 − a31y1 − a32y2 − a33y3];

(7)

or simply

dyi
dt

= yi[ri −
3∑

j=1

aijyj(t)], i = 1, 2, 3, (8)

where r1 = a, r2 = d, r3 = h, a11 = b, a12 = c, a13 = η, a21 = −e, a22 = f ,
a23 = f + δ, a31 = −g, a32 = f − δ, a33 = f . Note that we have the following
cases:
Case 1. When (a, b, c, η, d, e, f, δ, h, g)> (0,0,0,0,0,0,0,0,0), then system (8)
represents system (6) with ν = 0.
Case 2. When h=0, then system (8) represents systems (5) and (4) with ν = 0.
Case 3. When h=0, e < 0, g < 0, then system (8) represents system (2) with
ν = 0 .

Let us consider a general non-autonomous dynamical system




dyi

dt = yi[ri(t)−
∑3

j=1 aij(t)yj(t)], t 6= τk, k ∈ Z+,

y2(τ
+
k ) = (1− h2k)y2(τ

−
k ),

y3(τ
+
k ) = (1− h3k)y3(τ

−
k ), t = τk, i = 1, 2, 3,

(9)

where hi(k+q) = hik, h1k ≡ 0, τk+q = ω + τk and Z+ = {1, 2, ...}, ri(t) are all
continuous periodic functions with a common period ω. Therefore we consider
some eco-epidemiological systems with impulsive forces in the predators/either
species. Again notice that when we put h3 = 0 in the above system we get
the following eco-epidemic system with pulse vaccination for the susceptible
predators:

{
dyi

dt = yi[ri(t)−
∑3

j=1 aij(t)yj(t)], t 6= τk, k ∈ Z+,

y2(τ
+
k ) = (1− h2k)y2(τ

−
k ), t = τk, i = 1, 2, 3,

(10)

where hi(k+q) = hik and τk+q = ω+τk. Here we study the dynamics of the system
(9) which is a general model applicable to a variety of impulsive eco-epidemic
situations as mentioned above.

3. Preliminary

In this section, we would like to recall few definitions and results from [23] for
our feature use.

3.1. Notations, definitions and preliminary results

Let J ⊂ R. We denote PC(J,R) as a set of functions ψ : J −→ R, which are
continuous from left for t ∈ J , t 6= τk, and have discontinuity of first kind at the
point τk ∈ J . Again we denote PC

′
(J,R) by the set of functions ψ : J −→ R
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with a derivative dψ
dt ∈ PC(J,R). Throughout this article we deal with the

following Banach Space of ω-periodic functions

PCω = {ψ ∈ PC([0, ω], R)|ψ(0) = ψ(ω)}, ‖ψ‖PC = sup{ψ(t) : t ∈ [0, ω]}
and

PC
′
ω = {ψ ∈ PC

′
([0, ω], R)|ψ(0) = ψ(ω)}, ‖ψ‖PC′ = max{‖ψ‖PC , ‖ψ′‖PC′}.

Moreover, for any y ∈ C (or PCω) we denote ȳ = 1
ω

∫ ω

0
y(t)dt.

Definition 1 ([23]). The set F ⊆ PCω is said to quasiequicontinuous in [0, ω]
if for any ε > 0, there exist a δ > 0 such that if x ∈ F , k ∈ Z+, t1, t2 ∈
[τk−1, τk] ∩ [0, ω] and |t1 − t2| < δ, then |x(t1)− x(t2)| < ε.

Lemma 1. The set F ⊆ PCω is said to relatively compact iff
(i) F is quasi-equicontinuous in J . (ii) F is bounded, that is, ‖ψ‖PCω =
sup{|ψ(t)| : t ∈ J} ≤ M for each x ∈ F and some M > 0.

The above Lemma 1 gives us the necessary and sufficient conditions for rela-
tive compactness in PCω.

Now for given α(t), β(t) ∈ PCω, let us consider the impulsive logistic equa-
tion, {

dx
dt = x[α(t)− β(t)x(t)], t 6= τk, k ∈ Z+,
x(τ+k ) = (1− hk)x(τ

−
k ), t = τk,

(11)

where hk+q = hk, and we assume that 1− hk > 0 (k ∈ Z+), then the following
results can be obtained easily.

Lemma 2. System (11) has a unique positive periodic solution θ[α,β] iff ᾱ >
1
ω ln(

∑q
k=1

1
1−hk

).

Now let us divide θ′[α,β] = θ[α,β][α − βθ[α,β]] by θ[α,β] and integrate over the

intervals (0, τ1), (τk, τk+1)(k = 1, 2, ...q − 1) and (τq, ω), we get,

ᾱ− 1

ω

∫ ω

0

βθ[α,β]dt =
1

ω
ln(

q∏

k=1

1

1− hi
).

Let φ[a,b](t, t
+
0 , w0) be the unique solution of the Cauchy problem





dw
dt = w(t)[a(t)− b(t)w(t)], t ≥ t0(t 6= τk), k ∈ Z+,
w(τ+k ) = (1− hk)w(τ

−
k ), t = τk,

w(t+0 ) = w0,
(12)

then it would not be very difficult to prove the following two lemmas by the trick
shown in [7].

Lemma 3. Given α(t), β(t) ∈ PCω with β > 0, for any w0 we have

lim
t→∞

|φ[a,b](t, t
+
0 , w0)− θ[α,β]| = 0

provided that ᾱ− 1
ω ln(

∏q
k=1

1
1−hk

) > 0 and 1− hk > 0 for k ∈ Z+.
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Lemma 4. Let x0 ∈ R be given with x0 > 0 and consider two functions
a(t), b(t) ∈ PC([t0,∞), R) with b(t) > 0. Assume that x(t) ∈ PC

′
such that




dx
dt ≥ x(t)[a(t)− b(t)x(t)], t ≥ t0(t 6= τk), k ∈ Z+,
x(τ+k ) ≥ (1− hk)x(τ

−
k ), t = τk,

x(t+0 ) ≥ x0,
(13)

then x(t) ≥ φ[a,b](t, t
+
0 , x0) for all t ≥ t0. Similarly we can show, x(t) ≤

φ[a,b](t, t
+
0 , x0) for all t > t0, by taking the reverse of all inequalities in (13).

4. Stability and persistence of system (9)

4.1. Stability of the trivial solution (0, 0, 0)

Let θbi be the unique ω-periodic solution of the following system{
dxi

dt = xi[ri(t)− aii(t)xi(t)], t 6= τk, k ∈ Z+, i = 1, 2, 3,
x2(τ

+
k ) = (1− h2k)x2(τ

−
k ); x3(τ

+
k ) = (1− h3k)x3(τ

−
k ), t = τk.

(14)

If (0, 0, 0) be a trivial solution of system (9), then we have the following conclu-
sion.

Theorem 1. The trivial solution (0, 0, 0) of system (9) is linearly stable if and
only if r̄i− 1

ω ln(
∏q

k=1
1

1−hik
) < 0 (i = 1, 2, 3 and h1k = 0) and it will be unstable

if and only if ∃ i0, 1 ≤ i0 ≤ n, r̄i0 − 1
ω ln(

∏q
k=1

1
1−hi0k

) > 0.

Proof. The stability of an ω-periodic solution ỹi(t) (i = 1, 2, 3) of system (9) can
be determined by considering the behavior of small-amplitude perturbation of
the solution. Let us define yi = ỹi(t) + xi(t) ( i=1,2,3), then we can write


x1(t)
x2(t)
x3(t)


 = Φ(t)




x1(0)
x2(0)
x3(0)


 ,

where Φ(t) satisfy

dΦ(t)

dt
=




a∗11 − a11ỹ1(t) −a12ỹ1(t) −a13ỹ1(t)
−a21ỹ2(t) a∗22 − a22ỹ2(t) −a23ỹ2(t)
−a31ỹ3(t) −a32ỹ3(t) a∗33 − a33ỹ3(t)


Φ(t),

with a∗ii = ri −
∑3

j=1 aij ỹj(t), i = 1, 2, 3. Here is Φ(0) = I, the identity matrix.

Now we impose the impulsive conditions to the system (9) and have


x1(τ
+
k )

x2(τ
+
k )

x3(τ
+
k )


 =




1 0 0
0 1− h2k 0
0 0 1− h3k







x1(τk)
x2(τk)
x3(τk)


 .

Hence, if the absolute value of the eigenvalues of the following matrix

M =




1 0 0
0

∏q
k=1(1− h2k)

0 0
∏q

k=1(1− h3k)


Φ(ω)
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are less than one, then the ω-periodic solution is locally stable.
The fundamental matrix for small amplitude solution about (0, 0, 0) solves

dΦ(t)

dt
=




r1 0 0
0 r2 0
0 0 r3


Φ(t)

with φ(0) = I, leads to

M =




eωr̄1 0 0
0

∏q
k=1(1− h2k)e

ωr̄2

0 0
∏q

k=1(1− h3k)e
ωr̄3


 ,

which implies that the Floquet of (0, 0, 0) are
∏q

k=1(1− hik)e
ωri < 1, i = 1, 2, 3.

This completes the proof. ¤

4.2. Persistence

Theorem 2. The sufficient condition for system (9) to be persistent is r̄i >
1
ω [
∏q

k=1 ln
1

(1−hik)
] +

∑3
i 6=j āijθbj i = 1, 2, 3., where h1k ≡ 0

Proof. From system (9), we have
{

dyi

dt ≤ yi[ri(t)− aii(t)yi(t)], t 6= τk, k ∈ Z+,
y2(τ

+
k ) = (1− h2k)y2(τ

−
k ); y3(τ

+
k ) = (1− h3k)y3(τ

−
k ), t = τk.

(15)

Combining the Lemma 3 and Lemma 4 we have yi(t) ≤ θbj for very large t.
Therefore, there exist a ω1 > 0, such that

yi(t) ≤ θbj i = 1, 2, 3, t ≥ ω1.

Hence{
dyi

dt ≥ yi[ri(t)−
∑3

i 6=j aij(t)θbj − aii(t)yi(t)], t 6= τk, k ∈ Z+,

y2(τ
+
k ) = (1− h2k)y2(τ

−
k ); y3(τ

+
k ) = (1− h3k)y3(τ

−
k ), t = τk.

(16)

Again by the Lemmas 3 and Lemma 4, and with the conditions of Theorem 2,
we have yi(t) ≥ θ[ri−

∑3
i6=j aijθbj ,aii]

, i = 1, 2, 3, t ≥ ω.

Let ρ = infi∈(1,2,3){θ[ri−∑3
i 6=j aijθbj ,aii]

|t ∈ [0, ω]}, σ = supi∈(1,2,3){θbi : |t ∈
[0, ω]}, then we have

0 < ρ ≤ lim
t→∞

inf yi(t) ≤ lim
t→∞

sup yi(t) ≤ σ < ∞.

Hence the proof is completed. ¤

5. Existence and stability of the infection-free solution

Without any infection, the model (9) reduces to




dy1

dt = y1[r1(t)− a11(t)y1 − a12(t)y2 − a13(t)y3],
dy2

dt = y2[r2(t)− a21(t)y1 − a22(t)y2 − a23(t)y3], t 6= τk, k ∈ Z+,
y2(τ

+
k ) = (1− h2k)y2(τ

−
k ), t = τk,

(17)
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where hi(k+q) = hik, h1k ≡ 0 and τk+q = ω + τk. The nature of the solution of
the above system has been investigated in [7]. Here we mention their results in
terms of our system parameters.

Theorem 3. System (17) has a semi-trivial positive solution of the form (y1(t), 0)
if and only if r̄1 > 0. The necessary and sufficient condition for which sys-
tem (17) admits a semi-trivial positive solution of the form (0, y2(t)) is r̄2 >
1
ω [
∏q

k=1 ln
1

(1−h2k)
]

Theorem 4. (i) The trivial solution (0, 0) is unstable if and only if system
(17) has a semi-trivial positive solution, that is, if and only if either r̄1 > 0 or
r̄2 > 1

ω [
∏q

k=1 ln
1

(1−h2k)
]

Now for all case r1 = a > 0, therefore system (17) has always a semi-trivial
positive solution of the form (y1(t), 0), as a consequence the trivial solution (0, 0)
is unstable. That is, extinction of the both the species can not possible in the
infection-free system (17).

6. Existence and stability of the prey-free solution

In this section, we are interested to show the behaviors of the solution of
system (9) in the absence of the prey population. Therefore here we deal with
the following system of differential equations,{

dy2

dt = y2[r2 − a22y2 − a23y3] ≡ F1(y2, y3), t 6= τk,
dy3

dt = y3[r3 − a32y2 − a33y3] ≡ F2(y2, y3), τk+1 = τk + ω,
(18)

{
y2(τ

+
k ) = (1− h2)y2(τ

−
k ) ≡ Θ1(y2, y3), t = τk,

y3(τ
+
k ) = (1− h3)y3(τ

−
k ) ≡ Θ2(y2, y3), k ∈ Z+,

(19)

where F2(y2, 0) = Θ2(y2, 0) ≡ 0, Θ1 6= 0 for y2 6= 0 and Θ2 6= 0 for y3 6= 0. All
notations used in this section are the same as those in [17].

6.1. Stability of trivial periodic solution

Let us assume that Φ be the flow associated to (18), we haveX(t) = φ(t, y2(0),
y3(0)), 0 < t ≤ τ , where X0 = X(y2(0), y3(0)) and X = (y2, y3)

ω. We assume
that the flow Φ applies to time τ . So, X(τ) = φ(τ,X0). We also assume
that system (18)-(19) with y3 = 0, has a stable τ0-periodic solution denoted by
xs. Denote ζ = (xs, 0) as a τ0-periodic solution of system (18)-(19) in the two
dimensional space. We again denote x0 = xs(0). (x0, 0) is the initial condition
for ζ. Then, ζ(0) = (x0, 0) and finally we arrive at the following conclusion in
the form following theorems derived in [14].

Theorem 5. If the following inequalities holds

(i) |∂Θ1

∂y2
(Φ(τ0, (x0, 0)))

∂φ1

∂y2
(τ0, (x0, 0))| < 1, (20)

(ii) |∂Θ2

∂y3
(ζ(τ0))| exp

∫ τ0

0

|∂F2(ζ(r))

∂y3
dr < 1, (21)



1368 Zhijun Liu and Sahabuddin Sarwardi

then the trivial solution ζ = (xs, 0)
ω is exponentially stable.

Theorem 6. If τ0 > 1
r2

ln( 1
1−h2

), where τ0 = ln((1−h2)
a33
a22 (1−h3)

−1)

r3(1− r2a33
r3a22

)
, then there

exist a ε0 > 0, such that |a33

r3
| < ε0, system (18)-(19) has a non trivial periodic

solution.

6.2. Subcritical case and bifurcation

Theorem 7. If the equation (20) is satisfied along with d́0 = 0, where d́0 =

1− (1− h2)
− a33

a22 (1− h3)e
τ0r3(1− r2a33

r3a22
), then we have the following results:

(a) If BC 6= 0, then we have a bifurcation. Moreover, we have a bifurcation
of a nontrivial periodic solution of system (18) − (19) provided BC < 0 and a
subcritical case if BC > 0.
(b) If BC = 0, then we have an undetermined case, where

B = −(1− h2)r3

(
1− a33

r3
xs(τ0) exp(

∫ τ0

0
τ2(1− a33

r3
xs(τ))dτ)

)

+ r3
a33

r3

(
(1− h2)(1− h3)ẋs(τ0)

1− (1− h2)−1e− r2τ0

)
×

∫ τ0

0

{
exp

(∫ τ0

u
r3

(
1− a33

r3
xs(τ)

)
dτ

)

× exp

(∫ u

0
r3

(
1− a33

r3
xs(τ)

)
dτ

)}
du,

C = −2a33(1− h3)(1− h2)
(2− a23

a22
)
e
−r2

a23
a22

τ0

e
r2τ0(

a23
a22

−1) − (1− h2)e
r2

a23
a22

τ0
×

∫ τ0

0

{
exp

(∫ τ0

u
r3

(
1− a33

r3
xs(τ)

)
dτ

)

× exp

(∫ u

0
r3

(
1− a33

r3
xs(τ)

)
dτ

)}
du

+
2r3(1− h3)

r3/a32

∫ τ0

0

{
exp

(∫ τ0

u
r3

(
1− a33

r3
xs(τ)

)
dτ

)

× exp

(∫ u

0
r3

(
1− a33

r3
× xs(τ)

)
dτ

)}
du

− (1− h3)a23a33

∫ τ0

0

[
exp

(∫ τ0

u
r3

(
1− a33

r3
xs(τ)

)
dτ

)

×
∫ u

0

{
exp

(∫ u

p
r3

(
1− 2xs(τ)

r2/a22

)
dτ

)
xs(p) exp

(∫ p

0
r3

(
1− a33

r3
xs(τ)

)
dτ

)}
dp

]
du.

7. Existence of ω-periodic solution

In this section, the existence of at least one positive periodic solution has been
shown by using the Mawhin’s continuation theorem. To show our main results
we need to go through some basic preparation. Let us make the following change
of variables

yi(t) = exp{xi(t)}, i = 1, 2, 3,
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then (9) reduces to




x′
i(t) = ri(t)−

3∑
j=1

aije
xj(t), i = 1.2, 3, t 6= τk, k ∈ Z+,

∆x2(t)|t=τk = x2(τ
+
k )− x2(τ

−
k ) = ln(1− h2k),

∆x3(t)|t=τk = x3(τ
+
k )− x3(τ

−
k ) = ln(1− h3k).

(22)

Therefore, we consider the existence of periodic solutions of system (9); this
is equivalent to finding solutions of the boundary-value problem consisting of
(22) on [0, ω], with boundary conditions x(0) = x(ω).




x′
i(t) = ri(t)−

n∑
j=1

aij(t)e
xj(t), t 6= τk, t ∈ [0, ω], k = 1, 2, · · · , q,

∆x2(t)|t=τk = x2(τ
+
k )− x2(τ

−
k ) = ln(1− h2k),

∆x3(t)|t=τk = x3(τ
+
k )− x3(τ

−
k ) = ln(1− h3k),

xi(0) = xi(ω), i = 1, 2, 3.

(23)

Now let X,Z are real Banach spaces, L : DomL ⊂ X → Z be a Fredholm
mapping of index zero (index L = dim ker L−codim Im L) , and let P : X → X,
Q : Z → Z are continuous projectors such that Im P = Ker L, Ker Q = Im L
and X = Ker L

⊕
KerP , Z = ImL

⊕
ImQ. Denoting the restriction of L to

DomL ∩ Ker P by LP , we have KP : Im L → Ker P ∩ Dom L, the inverse (to
LP ); and J : Im Q → Ker L, an isomorphism of Im Q onto Ker L.

Now the Mawhin’s continuous theorem [15] can be written as follows:

Lemma 5. (Continuation theorem). Let Ø ⊂ X be an open bounded set and let,
N : X → Z be a continuous operator which is L-compact on Ø̄ (i.e.,QN : Ø̄ → Z
and KP (I − Q)N : Ø̄ → Z are compact), L : Dom L ⊂ Z → Z be a Fredholm
mapping of index zero. Assume (a) for each λ ∈ (0, 1), x ∈ ∂Ø ∩ Dom L,
Lx 6= λNx, (b) for each x ∈ Ker L ∩ ∂Ø, QNx 6= 0, and

deg{JQN,Ø ∩Ker L, 0} 6= 0.

Then Lx = Nx has at least one solution in Dom L ∩ Ø̄.

To prove our main results by means of the continuation theorem explained
before, we need to introduce some function spaces.

For any non-negative integer p, let
C(p)[0, ω; t1, · · · , tq] = {x : [0, ω] → Rn|x(p)(t) exists for t 6= t1, · · · , tq;x(p)(t+

0), x(p)(t − 0) exists at t1, · · · , tq; and x(j)(tk) = x(j)(tk − 0), k = 1, · · · , q, j =

0, 1, 2, · · · , p} with the norm ‖ x ‖p= max{ sup
t∈[0,ω]

‖ x(j)(t) ‖}pj=1, where ‖ · ‖ is

any norm of Rn. It is trivial to see that C(p)[0, ω; t1, · · · , tq] is a Banach space.
Now, we prove the following theorem.

Theorem 8. Suppose that āij > 0, R̄i > 0, and

R̄i >

3∑
j=1

j 6=i

āij
ājj

R̄je
2R̄iω, i, j = 1, 2, 3 and i 6= j,



1370 Zhijun Liu and Sahabuddin Sarwardi

then system (9) has at least one positive ω-periodic solution, where

R̄i =
1

ω

q∑

k=1

(1− hik) + r̄i and h1k ≡ 0.

Proof. Note that the existence of solution of (23) is sufficient to proof our claim.
In order to use the continuation theorem of coincidence degree theory, it is
necessary to establish the existence of a solution of system (23), we take

X = {x ∈ C[0, ω; t1, · · · , tq]}, Z = X ×R3q

Then X is a Banach space with the norm ‖ · ‖0, and Z is also a Banach space
with the norm ||z|| = ||x||0 + ||y||, x ∈ X, y ∈ R3q. Let

DomL = {x ∈ C(1)[0, ω; t1, · · · , tq]}
L : Dom L → Z, x → (x′,4x(t1), · · · ,4x(tq)),
N : X → Z,

Nx =







r1 −
3∑

j=1

a1je
xj

r2 −
3∑

j=1

a2je
xj

r3 −
3∑

j=1

a3je
xj




,




0
ln(1− h21)
ln(1− h31)


 , · · · ,




0
ln(1− h2m)
ln(1− h3m)







.

Obviously

KerL = {x : x = C ∈ R3, t ∈ [0, ω]},
ImL = {z = (f, C1, · · · , Cq, d) ∈ Z :

∫ ω

0
f(s)ds+

q∑
k=1

Ck = 0}

and

dim KerL = 3 = codim ImL.

So, ImL is closed in Z, L is a Fredholm mapping of index zero. Take

Px = 1
ω

∫ ω

0
x(t)dt,

Qz = Q(f, C1, · · · , Cq) = ( 1
ω [
∫ ω

0
f(s)ds+

q∑
k=1

Ck], 0, · · · , 0).

It is easy to show that P and Q are continuous projectors such that

ImP = KerL, ImL = KerQ = Im(I −Q).

Furthermore, by an easy computation, we can find that the inverse KP : ImL →
KerP ∩DomL of Lp has the form

KP z =

∫ t

0

f(s)ds+
∑
t>tk

Ck − 1

ω

∫ ω

0

∫ t

0

f(s)dsdt−
q∑

k=1

Ck. (24)
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Thus

QNx =







1
ω

∫ ω

0
[r1(t)−

3∑
j=1

1
ω

∫ ω

0
a1j(t)e

xj(t)]dt

1
ω

∫ ω

0
[r2(t)−

3∑
j=1

1
ω

∫ ω

0
a2j(t)e

xj(t)]dt+ 1
ω

q∑
k=1

ln(1− h2k)

1
ω

∫ ω

0
[r3(t)−

3∑
j=1

1
ω

∫ ω

0
a3j(t)e

xj(t)]dt+ 1
ω

q∑
k=1

ln(1− h3k)




, 0, · · · , 0




,

KP (I −Q)Nx =




∫ t

0
[r1(s)−

3∑
j=1

a1j(s)e
xj(s)]ds

∫ t

0
[r2(s)−

3∑
j=1

a2j(s)e
xj(s)]ds+

∑
t>tk

ln(1− h2k)

∫ t

0
[r3(s)−

3∑
j=1

a3j(s)e
xj(s)]ds+

∑
t>tk

ln(1− h3k)




−




1
ω

∫ ω

0

∫ t

0
[r1(s)−

3∑
j=1

a1j(s)e
xj(s)]dsdt

1
ω

∫ ω

0

∫ t

0
[r2(s)−

3∑
j=1

a2j(s)e
xj(s)]dsdt+

q∑
k=1

ln(1− h2k)

1
ω

∫ ω

0

∫ t

0
[r3(s)−

3∑
j=1

a3j(s)e
xj(s)]dsdt+

q∑
k=1

ln(1− h3k)




−




( t
ω − 1

2 )
∫ ω

0
[r1(s)−

3∑
j=1

a1j(s)e
xj(s)]ds

( t
ω − 1

2 )
∫ ω

0
[r2(s)−

3∑
j=1

a2j(s)e
xj(s)]ds+

q∑
k=1

ln(1− h2k)

( t
ω − 1

2 )
∫ ω

0
[r3(s)−

3∑
j=1

a3j(s)e
xj(s)]ds+

q∑
k=1

ln(1− h3k)




.

Clearly, QN and KP (I−Q)N are continuous. Using the Arzela-Ascoli theorem,
we can easily show that QN(Ø̄), KP (I − Q)N(Ø̄) are relatively compact for
any open bounded set Ø ⊂ X. Therefore, N is L-compact on Ø̄ for any open
bounded set Ø ⊂ X.

Now we need to search for an appropriate open, bounded subset Ø to use
the continuation theorem. Corresponding to the operator equation Lx = λNx,
λ ∈ (0, 1), we have
{

x′
i(t) = λ[ri(t)−

∑3
j=1 aij(t)e

xj(t)], t 6= τk, k = 1, 2, · · · , q, t ∈ [0, ω],

∆x2(t)|t=τk = λln(1− h2),∆x3(t)|t=τk = λln(1− h3), i = 1, 2, 3, xi(0) = xi(ω).
(25)

Let us assume that x(t) = (x1(t), x2(t), x3(t)) ∈ X is a solution of system (25)
for some λ ∈ (0, 1). Integrating (25) over the interval [0, ω], we obtain

∫ ω

0

[ri(t)−
3∑

j=1

aij(t)e
xj(s)]ds+

q∑

k=1

ln(1 + bik) = 0,
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that is
3∑

j=1

∫ ω

0

aij(t)e
xj(t)dt = R̄iω, (26)

where R̄i =
1
ω

∑q
k=1(1 − hik) + r̄i and h1k ≡ 0. It follows from (25) and (26)

that
∫ ω

0

|x′
i(t)|dt ≤ r̄iω +

3∑

j=1

∫ ω

0

aij(t)e
xj(t)dt+

q∑

k=1

ln(1− hik) = 2R̄iω. (27)

Since x(t) ∈ X, there exist ξi ∈ [0, ω] such that

xi(ξi) = min
t∈[0,ω]

xi(t) i = 1, 2, 3. (28)

From (26) and (28), we observe that

āiie
xi(ξi) ≤ R̄i,

which implies

xi(ξi) ≤ ln{ R̄i

āii
}. (29)

From (27) and (29), we obtain

xi(t) ≤ xi(ξi) +

∫ ω

0

|x′
i(t)|dt ≤ ln{ R̄i

āii
}+ 2R̄iω

def
= M+

i . (30)

On the other hand, there exist ηi ∈ [0, ω] such that

xi(η
+
i ) = sup

t∈[0,ω]

xi(t). (31)

In the above formula, if ηi is not an impulse point, we have xi(η
+
i ) = xi(ηi); if

ηi = tk and tk is an impulse point, we have xi(η
+
i ) = xi(t

+
k ). From (26) and

(30) we have

āiie
xi(η

+
i ) ≥ R̄i −

3∑
j=1

j 6=i

āije
xj(η

+
j ),

which implies

xi(η
+
i ) ≥ ln

R̄i −
3∑

j=1

j 6=i

āij

ājj
R̄je

2R̄iω

āii

def
= Mi. (32)

From (27) and (32), we have

xi(t) ≥ xi(η
+
i )−

∫ ω

0

|x′
i(t)|dt

≥ Mi − 2R̄iω
def
= M−

i .

(33)
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From (32) and (33), we obtain

sup
t∈[0,ω]

|xi(t)| < max{|M+
i |, |M−

i |} def
= Hi. (34)

Clearly, Hi are independent of λ. Since

R̄i >

3∑
j=1

j 6=i

āij
ājj

R̄je
2R̄iω >

3∑
j=1

j 6=i

āij
ājj

R̄j ;

by using the Lemma 4.1.1 of [10] and the assumptions of Theorem 8, it is not
difficult to show that the system of algebraic equations

3∑

j=1

∫ ω

0

āije
xjdt = R̄iω i = 1, 2, 3 (35)

has a unique solution (x∗
1, x

∗
2, x

∗
3)

> ∈ R3. Set H = ‖(H1,H2, H3)
>‖ + C,

where C is taken sufficiently large such that the unique solution of (35) sat-
isfies ‖(x∗

1, x
∗
2, x

∗
3)

>‖ < C, then ‖x‖ < H. Let

Ø = {x(t) = (x1, x2, x3)
> ∈ X : ‖x(t)‖ < H}.

It is clear that Ø satisfies the requirement (a) of Lemma 5. If x ∈ KerL ∩ ∂Ø,
then x is a constant vector in Rn with ‖x‖ = H; therefore, we have

QNx =







r̄1 −
3∑

j=1

ā1je
xj + 0

r̄2 −
3∑

j=1

ā2je
xj + 1

ω

q∑
k=1

ln(1 + b2k)

r̄3 −
3∑

j=1

ā3je
xj + 1

ω

q∑
k=1

ln(1 + b3k)




, 0, · · · , 0




6= 0.

Let J : ImQ → KerL, (r, 0, · · · , 0) → r; then, we get

JQNx =




r̄1 −
3∑

j=1

ā1je
xj + 0

r̄2 −
3∑

j=1

ā2je
xj + 1

ω

q∑
k=1

ln(1 + b2k)

r̄3 −
3∑

j=1

ā3je
xj + 1

ω

q∑
k=1

ln(1 + b3k)




.

Furthermore, in view of the assumptions of Theorem 8, it is easy to prove that

deg{JQNx,Ø ∩KerL, 0} = sgn{(−1)3[det(āij)3×3]e

3∑
j=1

e
x∗
j

} 6= 0.

Therefore, we have proved that ω satisfies all the requirements in Lemma 5.
Hence, system (9) has at least one ω-periodic solution in Ω̄. ¤
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8. Numerical examples

In this section we give some numerical examples in support to our analytical
findings; for instance, the following example is given in order to show the stable
trivial solution of system (9) as claimed in subsection 4.1.

Example 1.



y′1(t) = y1(t)(−0.1− (0.11 + 0.1sin(2πt))y(1)− (0.012 + 0.01sin(2πt))y(2)
−(0.013 + 0.01cos(2πt))y(3))

y′2(t) = x(2)(0.11− (0.011 + 0.01sin(2πt))y(1)− (0.12 + 0.1sin(2πt))y(2)
−(0.013 + 0.01cos(2πt))y(3));

y′3(t) = y(3)(0.3− (0.011 + 0.01sin(2πt))y(1)− (0.012 + 0.01sin(2πt))y(2)
−(0.13 + 0.1cos(2πt))y(3)), t 6= τk

y2(τ
+
k ) = (1− 0.2)y2(τ

−
k ); y3(τ

+
k ) = (1− 0.4)y3(τ

−
k ), t = τk

with the initial value (0.1, 0.2, 0.3).
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Fig 1. (a) Time-series of the species y1 with t over [0, 70]. (b) Time-series of the

species y2 with t over [0, 70]. (c) Time-series of the species y3 with t over [0, 70].
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The following example supports the claim of theorem 8.

Example 2.



y′1(t) = y1(t)(1.5− (0.21 + 0.1sin(2πt))y(1)− (0.012 + 0.01sin(2πt))y(2)
−(0.013 + 0.01cos(2πt))y(3))

y′2(t) = x(2)(1.2− (0.011 + 0.01sin(2πt))y(1)− (0.22 + 0.1sin(2πt))y(2)
−(0.013 + 0.01cos(2πt))y(3));

y′3(t) = y(3)(1.3− (0.011 + 0.01sin(2πt))y(1)− (0.012 + 0.01sin(2πt))y(2)
−(0.33 + 0.1cos(2πt))y(3)), t 6= τk

y2(τ
+
k ) = (1− 0.01)y2(τ

−
k ); y3(τ

+
k ) = (1− 0.02)y3(τ

−
k ), t = τk

with the initial value (0.1, 0.2, 0.3).
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Fig 2. (a) Time-series of the species y1 with t over [0, 70]. (b) Time-series of the

species y2 with t over [0, 70]. (c) Time-series of the species y3 with t over [0, 70]. (d)

Corresponding phase portrait.

9. Discussion

The disease in the predator/either species plays a crucial in predator-prey
dynamics, [1]-[3], [16], [18]-[22]. However no attempt has been made to consider
the effect of impulse on this issue. As we explained in the introduction that
how important it is to consider these eco-epidemic models under the influence
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of impulse force to make them more realistic from biological point of view. In
this article, we propose and analyze an eco-epidemic predator-prey system with
disease in the predator/either species with impulsive effect, which in fact, covers
variety of practical ecological situations.

We investigated the conditions (Theorem 1) for which the trivial equilibrium
(0, 0, 0) is stable and unstable. The undesirable case when it is stable; however
the extinction of the both species is frequently observed in nature, [31]; and can
be thus explained by our model (see numerical Example 1 also); and cannot
be explained by the impulse free model, since in this case, trivial equilibrium
(0, 0, 0) in unstable always (see p.15 in [22]). At the same time, in Theorem 2,
we have also obtained the persistence condition, which states the coexistence of
all the species.

In section 5, the existence of infection free ’semi-trivial’ solutions (y1(t), 0) and
(0, y2(t)) have been given. We noticed there that infection free solution (0, 0)
is always unstable; however with out impulsive force the resultant system has
also unstable trivial solutions around (0, 0), see section 2.1 of [22]. Therefore, the
impulsive force does not make any change in the stability of (0, 0) in the infection
free system; however with infection it changes the unstable equilibrium (0, 0, 0)
to a stable one. Thus, infection may cause the extinction of all the species in
impulsive eco-epidemic system, a natural result reproduces by our model.

The non trivial periodic solution of prey free situation has been shown in
section 6. This gives conditions for which prey will extinct. In nature there are
many situations where extinction of the prey species is desirable and introduc-
tion of non-fatal disease into the predator is a potential method of biological
control to ensure extinction of the prey; Theorem 6 gives us the required condi-
tions. In addition, we have also given the conditions for which this sub system
has subcritical Hopf bifurcation which gives a oscillatory situation of infected
predator and healthy predator.

Our main results lie in section 7. There we obtain a set of sufficient conditions
for the existence of at least one strictly positive periodic solution of our proposed
model by using the method of coincidence degree. This case reflects the fact
where the three species prey, healthy predator and the infected predator exist
in the eco-epidemic system. Our analytical claim is supported by the numerical
Example 2.

Before ending this article, we remark that since this is one of the earlier
attempts to show the effect of impulse on eco-epidemiological model, there is a
room of improvement. Here we mention some future directions of research based
on this article: (i) One may consider the situation where the disease crosses the
species barrier. (ii) The time delay or latent period between contact between
susceptible and infected species could also be modeled; and (iii) the effect of
impulsive force for the both species is also an important factor to be considered.
These are possible directions for future research.
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