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UPRIGHT DRAWINGS OF GRAPHS ON THREE LAYERS

MUHAMMAD JAWAHERUL ALAM∗, MD. MASHFIQUI RABBI,
MD. SAIDUR RAHMAN AND MD. REZAUL KARIM

Abstract. An upright drawing of a planar graph G on k layers is a planar
straight-line drawing of G, where the vertices of G are placed on a set of k
horizontal lines, called layers and no two adjacent vertices are placed on the
same layer. There is a previously known algorithm that decides in linear
time whether a planar graph admits an upright drawing on k layers for a
fixed value of k. However, the constant factor in the running time of the
algorithm increases exponentially with k and makes it impractical even for
k = 3. In this paper, we give a linear-time algorithm to examine whether
a biconnected planar graph G admits an upright drawing on three layers
and to obtain such a drawing if it exists. We also give a necessary and
sufficient condition for a tree to have an upright drawing on three layers.
Our algorithms in both the cases are much simpler and easier to implement
than the previously known algorithms.

AMS Mathematics Subject Classification : 05C62, 05C85, 37F20, 97K20.
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ings, trees, biconnected graphs.

1. Introduction

An upright drawing of a planar graph G is a planar straight-line drawing of G
where the vertices of G are placed on a set of horizontal lines, called layers and
no two adjacent vertices are placed on the same layer [11]. For example, Fig.
1(b) illustrates an upright drawing Γ1 of the graph G1 in Fig. 1(a) that occupies
three layers. On the other hand, the graph G2 of Fig. 1(c) does not admit any
upright drawing on three layers although it admits an upright drawing Γ2 on
four layers as illustrated in Fig. 1(d). Thus the problem of determining whether
a given graph admits an upright drawing on k layers for a given value of k ≥ 3
is quite challenging although the problem is trivial for k < 3. In this paper, we
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give a linear-time algorithm to determine whether a biconnected planar graph
G admits an upright drawing on three layers. We also address the problem of
upright drawings of trees on three layers.
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Figure 1. (a) The graph G1, (b) an upright drawing Γ1 of G1

on three layers, (c) the graph G2, and (d) an upright drawing
Γ2 of G2 on four layers.

An upright drawing of a planar graph is a variant of the well studied graph
drawing convention, named “layered drawings” [11]. A layered drawing of a
planar graph G is a planar straight-line drawing of G such that the vertices
of G are drawn on a set of layers. Thus an upright drawing of G is a layered
drawing of G with the additional constraint that no two adjacent vertices of G
are placed on the same layer. Layered drawings have important applications in
VLSI layouts [8], DNA-mapping [12], information visualization [3], [7] etc. In
some of these application areas, it is often desirable to obtain an upright drawing
of a planar graph on a desired number of layers. For example in the “standard
cell” technology employed during the VLSI layout design, the VLSI modules
are placed on some constant number of previously fixed rows so that they can
be lined up in rows on the integrated circuit. The placement of these modules
thus gives a layered drawing of the graph obtained from the VLSI circuit where
each vertex represents a module in the circuit and each edge represents an in-
terconnection between two modules. Since the modules in a standard cell are
designed so that the input and output lines are emitted from the top and the
bottom of each module, this drawing is upright. Thus one can obtain a VLSI
circuit layout on a standard cell with k rows from an upright drawing of the
corresponding graph on k layers. There are some known algorithms to check
whether a planar graph admits a layered drawing on two and three layers such
as [1], [2], [6] etc. There are also some known results on “proper drawings”
of planar graphs. A proper drawing of a planar graph G is an upright draw-
ing of G with the additional constraint that adjacent vertices of G are placed
on adjacent layers in the drawing. Dujmović et al. [4] employed a dynamic
programming approach to give a linear-time algorithm that decides whether a
planar graph admits a proper drawing on k layers for a fixed value of k. A slight
modification of this algorithm yields a similar algorithm for upright drawings of

planar graphs. Unfortunately, the constant factor (= 232k
3

) [4] in the running
time of the algorithm increases exponentially with k and is impractically large
even for k = 3 [11]. Fößmeier, Kaufmann [5] and Suderman [11] addressed the
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problem of proper drawings of planar graphs on three layers. However, there is
no such algorithms for upright drawings of planar graphs that can be efficiently
implemented to meet the requirements arising in many application areas. In
this paper, we give a a linear-time algorithm that determines whether a bicon-
nected planar graph G admits an upright drawing on three layers. We also give
a linear-time algorithm to obtain an upright drawing of G on three layers if it
exists. Furthermore, we give a necessary and sufficient condition for a tree to
have an upright drawing on three layers. These algorithms are much simpler in
approach and much easier to implement than the previously known algorithms.

The rest of this paper is organized as follows. In Section 2, we present our
algorithm to examine whether a biconnected planar graph G has an upright
drawing on three layers and to obtain such a drawing if G has. Section 3 gives a
characterization of a tree to admit an upright drawing on three layers. Finally,
Section 4 concludes the paper with some suggestions on future works.

2. Upright Drawings of Biconnected Planar Graphs

In this section, we first give a linear-time algorithm to check whether a bicon-
nected plane graph G admits an upright drawing on three layers and to obtain
such a drawing of G if it exists. (Note that a plane graph is a planar graph with
a fixed planar embedding.) Then we give a linear-time algorithm to examine
whether a biconnected planar graph G has an upright drawing on three layers.

We first give the definition of the “simple weak dual graph” of a plane graph.
Let G be a plane graph. G divides the plane into some regions, called the faces
of G. The bounded regions are called the inner faces of G and the unbounded
region is called the outer face of G. A vertex v of G is called an outer vertex if
v is on the outer face of G; otherwise it is called an internal vertex. The simple
weak dual graph of a plane graph G is another graph H where the each vertex of
H represents an inner face of G and there is an edge between two vertices u and
v of H if the faces of G corresponding to u and v share one or more consecutive
edges. We now have the following lemma that establishes a necessary condition
for a biconnected plane graph to admit an upright drawing on three layers.

Lemma 1. Let a biconnected plane graph G admit an upright drawing Γ on
three layers. Then the simple weak dual graph G∗ of G is a path.

Proof. We first prove that G∗ does not contain any cycle. Assume for a contra-
diction that G∗ contains a cycle C. Then the faces of G corresponding to the
vertices of G∗ on C induces at least one internal vertex of G with degree three
or more as illustrated in Fig. 2(a). Thus, to prove that G∗ contains no cycle, it
is sufficient to prove that G does not have any internal vertex with degree three
or more.

Suppose there is an internal vertex v of G with degree three or more. Since
the vertices on the top and bottom layers in Γ are on the outer face of G, v
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is placed on the middle layer in Γ. Then none of the neighbors of v in G is
placed on the middle layer since Γ is an upright drawing. Hence, either the top
or the bottom layer contains at least two neighbors of v in G. Without loss of
generality, let us assume that v has two neighbors u and w on the top layer in Γ.
Since v is an internal vertex, there must be a path between u and w along the
top layer as illustrated in Fig. 2(b). However, this would place adjacent vertices
of G are on the same layer in Γ, a contradiction.

(a) (b)

Figure 2. (a) A cycle in G∗ induces an internal vertex with
degree three or more in G, (b) G does not contain an internal
vertex of degree three or more.

We thus assume that there is no cycle in G∗. Since each face of G occupies
all three layers in Γ, each face shares edges with at most two other faces of G,
one to its left and one to its right in Γ. Hence, every vertex of G∗ has degree at
most two and G∗ is a path. �

We call a biconnected plane graph (embedding) a dual-path biconnected graph
(embedding) if its simple weak dual graph is a path. Lemma 1 implies that if a
biconnected plane graph G admits an upright drawing on three layers, then G is
a dual-path biconnected graph. However, this condition alone is not sufficient.
Before we give a necessary and sufficient condition for a biconnected plane graph
to have an upright drawing on three layers, we need some definitions. Let G be
a dual-path biconnected graph with at least two faces and let G∗ be its simple
weak dual graph. Let Fl and Fr be the faces corresponding to the two end-
vertices of G∗, and let F ′

l and F ′
r be the faces corresponding to the neighbors of

Fl and Fr in G∗, respectively. If we delete those vertices of Fl (Fr) that are not
on F ′

l (F ′
r), then the outer cycle of G is divided into two paths. Let us denote

these two paths by Pt and Pb and call them the top path and the bottom path,
respectively. Figure 4(a) illustrates the top path and the bottom path of a dual-
path biconnected graph. Let the two end-vertices of Pt be tl and tr and the two
end-vertices of Pb be bl and br as illustrated in Fig. 4(a). We call tl, bl, tr and
br the left-top vertex, the left-bottom vertex, the right-top vertex and the right-
bottom vertex, respectively. We denote by odd(tl) (odd(tr)) the set of vertices
that are at odd distance from tl (tr) along Pt. The set {b, d, f, h} consists odd(tl)
in Fig. 4(a). We also denote by odd(bl) (odd(br)) the set of vertices that are at
odd distance from bl (br) along Pb. Similarly we define the notations even(tl),
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even(tr), even(bl) and even(br). A set S of vertices in a graph G is said to be
independent if G contains no edge between any pair of vertices in S. We now
have the following theorem.

Theorem 1. Let G be a dual path biconnected graph with at least two faces. Let
tl and bl be the left-top and left-bottom vertices of G and let Vin be the set of
internal vertices of G. Then G admits an upright drawing on three layers if and
only if at least one of the three sets Stb = odd(tl) ∪ odd(bl) ∪ Vin, Stm = odd(tl)
∪ even(bl) ∪ Vin and Smb = even(tl) ∪ odd(bl) ∪ Vin is independent in G and
contains no vertices of degree greater than three.

Proof. Suppose G admits an upright drawing Γ on three layers. Since the draw-
ing of each face requires all three layers of Γ, the faces of G are placed in the
order of the corresponding vertices along the simple weak dual graph of G. Let
Fl and Fr be the faces corresponding to the two end-vertices of G∗. Then we
may assume that Fl and Fr are drawn at the leftmost and rightmost position in
Γ, respectively. Then the top path Pt and the bottom path Pb must be drawn
between the drawings of Fl and Fr as illustrated in Fig. 3(a). One of these two
paths (say Pt) must be drawn using the top layer and the middle layer only and
the other (say Pb) using the middle layer and the bottom layer only; otherwise,
there would have been some edge crossings between the two paths. Since tl and
bl are on the common boundary of Fl and the face immediately to the right of
Fl, either tl and bl are adjacent to each other or both of them are adjacent to
some internal vertex. In either case, both tl and bl are not placed on the middle
layer since no two adjacent vertices are placed on the same layer in Γ. Therefore,
there are three possible cases regarding the placement of the two vertices tl and
bl on these three layers:

(i) tl on the top layer and bl on the bottom layer,
(ii) tl on the top layer and bl on the middle layer, and
(iii) tl on the middle layer and bl on the bottom layer.
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Figure 3. (a) Pt and Pb are drawn between the drawing of Fl

and Fr, and (b) a vertex placed on the middle layer with degree
greater than three is a cut vertex.

If tl and bl are placed on the top layer and the bottom layer, respectively,
then all the vertices of the set Stb = odd(u) ∪ odd(v) ∪ Vin are placed on the
middle layers in Γ. Similarly all the vertices of the set Stm (Smb) are placed on
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the middle layer in Γ if u is placed on the top (middle) layer and v is placed
on the middle (bottom) layer. Again the vertices of G placed on the same layer
in an upright drawing gives an independent set in G. Furthermore Since G is
biconnected, no vertex w of G with degree greater than three is placed on the
middle layer in Γ; otherwise, w would have been a cut vertex in G as illustrated
in Fig. 3(b). Therefore, at least one of the three sets Stb, Stm and Smb is
independent in G and contains no vertices with degree greater than three in G.

Conversely if at least one of the three sets (say Stb) is independent in G and
contains no vertices of degree greater than three as illustrated in Fig. 4(a), then
we can construct an upright drawing of G on three layers as follows. We first
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Figure 4. Illustration for the proof of Theorem 1.

place the vertices of Pt on the top layer and the middle layer with increasing
x-coordinates from tl so that all the vertices of even(tl) (odd(tl)) are placed on
the top (middle) layer. Similarly, we place the vertices of Pb on the bottom
layer and the middle layer with increasing x-coordinates from bl such that all
the vertices of even(bl) (odd(bl)) are placed on the bottom (middle) layer. While
placing the vertices of Pb we take special care so that if a vertex vt of Pt and
a vertex vb of Pb are adjacent to each other or have an internal vertex as their
common neighbor, then these two vertices are placed in such positions that we
can add an edge between them without creating any edge crossings. (See Fig.
4(b).) This is always possible because the degree of each vertex of odd(tl) and
odd(bl) is at most three and hence each vertex of odd(tl) (odd(bl)) has at most
one neighbor not on Pt (Pb). We now place the internal vertices in the drawing.
Note that each the internal vertex of G has degree two and has exactly one
neighbor from Pt and exactly one neighbor from Pb; otherwise G would not have
been a dual-path biconnected graph. We place each of these internal vertices of
G in such a position on the middle layer that we can add an edge between these
vertices and their neighbors on the two paths Pt and Pb. Finally we place the
vertices of Fl and Fr that have not been yet placed and add all the edges of G
to complete the drawing. (See Fig. 4(c).) �

Theorem 1 gives a necessary and sufficient condition for a biconnected plane
graph to have an upright drawing on three layers. The proof of sufficiency also
gives a linear-time algorithm to obtain an upright drawing of a biconnected plane
graph G if G admits one. We now address the problem for a biconnected planar
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graph. Let G be a biconnected planar graph. Since G may have an exponential
number of embeddings, the naive approach of checking all these embeddings for
an existence of an upright drawing on three layers would take exponential time.
We now give a linear-time algorithm to check whether a biconnected planar
graph G admits an upright drawing on three layers. We first have the following
lemma.

Lemma 2. Let G = (V,E) be a biconnected planar graph that admits a dual-
path biconnected embedding. Let H be a graph defined as follows: the vertex set
of H is obtained by adding a vertex v to V and the edge set of H is obtained by
adding an edge (u, v) to E for each vertex u of degree three or more in G. Then
the following two conditions (a) and (b) hold:

(a) H is planar.
(b) If ΓH is a planar embedding of H where v is on the outerface and if ΓG is

an embedding of G obtained by deleting v from ΓH , then ΓG is a dual-path
biconnected embedding.

Proof. (a) Let Γ be a dual-path biconnected embedding of G. Then all the
vertices of G with degree three or more are on the outer cycle of Γ; otherwise
the dual graph of Γ would have contained a cycle as illustrated in Fig. 2(a), a
contradiction. Thus one can obtain a plane embedding of H from Γ by placing
v on the outer face and adding an edge from v to each vertex of degree three or
more in G without edge crossings.

x
F1 Fx

F
2

F
3

Figure 5. Illustration for the proof of Lemma 2(ii).

(b) Clearly the simple weak dual graph G∗ of ΓG contains no cycle since from
the construction it is obvious that each vertex of degree three or more in G are
on the outer face in ΓG. If each vertex of G∗ has degree at most two, then ΓG

is a dual-path biconnected embedding. We thus assume that the degree of a
vertex x of G∗ is at least three. Then the face Fx of ΓG corresponding to x
shares common boundary with at least three other faces F1, F2 and F3 other
than the outer face as illustrated in Fig. 5. It is then trivial to see that for any
embedding Γ′ of G, the simple weak dual graph would contain either a cycle
or a degree three vertex and hence Γ′ is not a dual-path biconnected graph, a
contradiction. �
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Let G be biconnected planar graph and let Γ be a dual-path biconnected
embedding of G. Let tl, tr, bl and br be the left-top vertex, the right-top vertex,
the left-bottom vertex and the right-bottom vertex of Γ, respectively. We call
a path of G a left path (right path) if its end-vertices are tl (tr) and bl (br)
and it contains no other vertices of the top or the bottom path. We call an
embedding Γ∗ of G a feasible embedding of G if the following conditions (a) and
(b) hold: (a) Γ∗ is a dual-path biconnected embedding, (b) the left path and
the right path of Γ∗ with the maximum length are both on the outer face on
Γ∗. One can always obtain a feasible embedding from a dual-path biconnected
graph by twisting or flipping the left paths across {tl, bl} and the right paths
across {tr, br} as illustrated in Fig. 6.

(a) (b)

Γ Γ∗

Figure 6. (a) a dual-path biconnected plane graph Γ, and (b)
a feasible embedding Γ∗ of Γ.

We now have the following lemma.

Lemma 3. Let G be a biconnected planar graph that admits a dual-path bicon-
nected embedding with at least two faces and let Γ∗ be a feasible embedding of G.
Then G admits an upright drawing on three layers if and only if Γ∗ admits an
upright drawing on three layers.

Proof. It is sufficient to prove that if Γ∗ does not admit an upright drawing on
three layers, then no other embedding of G admits such a drawing. Let tl, tr,
bl and br be the left-top, the right-top, the left-bottom and the right-bottom
vertices of Γ∗, respectively. One can observe that only the plane embeddings of
G that can be obtained by flipping the left paths of Γ∗ across {tl, tb} and the
right paths of Γ∗ across {tr, br} have all the vertices with degree three or more
on the outer face. Again in an embedding of G that admits an upright drawing
on three layers, at most one left path and at most one right path have length
greater than two and both are on the outer face. Since Γ∗ has the left and the
right paths of maximum length on the outer face, the result follows. �

The following theorem follows from the results in Lemma 2, Lemma 3 and
Theorem 1.

Theorem 2. Let G be a biconnected planar graph. One can examine in linear
time whether G admits an upright drawing on three layers. Furthermore, one
can also obtain such a drawing of G in linear time if it exists.
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3. Upright Drawings of Trees

In this section, we give a necessary and sufficient condition for a tree T to
have an upright drawing on three layers.

We first need some definitions. Let H be a subgraph of a graph G. Then
G−H denote the subgraph of G obtained by deleting all the vertices of H and
the edges incident to these vertices. A tree T is called a caterpillar if T contains
a path S, called the spine such that each component of T −S is a single vertex.
Similarly, T is called an extended caterpillar if T contains a path S, called the
spine such that each component of T − S is a caterpillar. A strict caterpillar is
a caterpillar which is not a path and a strict extended caterpillar is an extended
caterpillar which is not a caterpillar.

A path decomposition P of a graph G = (V,E) is a sequence V1, V2, . . ., Vf of

subsets of V such that the following conditions (a)–(c) hold: (a) (∪f
i=1Vi) = V ,

(b) for each edge (u, v) ∈ E, there is some index i (1 ≤ i ≤ f) such that u, v ∈ Vi,
(c) for each 1 ≤ i < j < k ≤ f , Vi ∩ Vk ⊆ Vj . The width of P is max

1≤i≤f
(|Vi| − 1).

The pathwidth of a graph G is the minimum width of a path decomposition of
G. Although finding the pathwidth of a graph G is NP-hard, Scheffler [9] gave
a linear-time algorithm to find the pathwidth of a tree. It is trivial to see from
the definition that a tree T has pathwidth zero (one) if and only if T is a path
(a strict caterpillar). We now have the following lemma that defines trees with
pathwidth two.

Lemma 4. A tree T has pathwidth two if and only if T is a strict extended
caterpillar.

We need the following lemma from [9] to prove Lemma 4.

Lemma 5. Let T be a tree and p > 1 be an integer. Then T has pathwidth
at least p if and only if there exists a vertex u of T such that at least three
components of T − u has pathwidth at least p− 1.

Proof of Lemma 4. Suppose the pathwidth of T is two. Then T has a path
decomposition V1, V2, . . . , Vf of width two. Let v1 be a vertex in V1 , vp a
vertex in Vp. Then by the definition, the path S between v1 and vp contains
at least one vertex from each Vi for 1 ≤ i ≤ f . Therefore each component
of T − S has pathwidth at most one and is thus a caterpillar. Hence T is an
extended caterpillar where S is the spine. Furthermore T is also a strict extended
caterpillar since otherwise it would have pathwidth one.

Conversely if T is a strict extended caterpillar, then it surely has pathwidth
at least two. We assume for a contradiction that T has pathwidth at least three.
Then by Lemma 5, T has a vertex u such that T−u has at least three components
C1, C2 and C3 with pathwidth at least two. Thus none of C1, C2 and C3 is a
caterpillar. Then for each path S of T , S contains no vertex from at least one of
C1, C2 and C3 and hence T is not an extended caterpillar, a contradiction. �
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Suderman gave a linear-time algorithm to obtain an upright drawing of a
tree with pathwidth h on ⌈3h/2⌉ layers [10]. Since an extended caterpillar has
pathwidth at most two according to Lemma 4, the algorithm in [11] gives an
upright drawing of an extended caterpillar on three layers. We now have the
following theorem that shows that this sufficient condition is also necessary.

Theorem 3. A tree T admits an upright drawing on three layers if and only if
T is an extended caterpillar.

Proof. Suppose T has an upright drawing Γ on three layers as illustrated in Fig.
7(a). Let u and v be the vertices of T with the minimum and the maximum
x-coordinates in Γ, respectively and let S denote the unique path between u
and v in T . T is an extended caterpillar if all the components C of T − S are
caterpillars. We thus assume that a component C of T−S is not a caterpillar. Let
ΓC be the the drawing of C contained in Γ. Then according to [5], ΓC occupies
all three layers in Γ. Thus it is not possible to draw the path S using straight-
line segments without edge crossings with ΓC , a contradiction, as illustrated in
Fig. 7(b). Thus each component of T − S is a caterpillar and T is an extended
caterpillar where S is the spine.

u

v

(a) (b)

S
v

u

C

Figure 7. Illustration for the proof of Theorem 3.

Conversely if T is an extended caterpillar, then T has pathwidth at most two
by Lemma 4 and we can obtain an upright drawing of T on three layers by the
algorithm in [11]. �

By Lemma 4 and Theorem 3, we can verify whether a tree T has an upright
drawing on three layers in linear time as follows. By the linear-time algorithm
of [9] we compute the pathwidth of T and verify whether the pathwidth is less
than or equal to two or not. Furthermore if T admits a upright drawing on three
layers, we can also obtain such a drawing by the linear-time algorithm of [11].
Thus the following corollary holds.

Corollary 1. Let T be a tree. One can examine whether T admits an upright
drawing on three layers in linear time. Furthermore, one can also obtain such a
drawing of T in linear time if it exists.
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4. Conclusion

In this paper, we gave a linear-time algorithm to examine whether a bicon-
nected planar graph G admits an upright drawing on three layers and to obtain
such a drawing if it admits. We also give a characterization of a tree to have an
upright drawing on three layers. Although there is a previously known algorithm
in [4] that determines in linear time whether a planar graph admits an upright
drawing on k layers for a fixed value of k, the constant factor in the running
time is grows exponentially with k and is impractically large even for k = 3 [11].
Furthermore the difficulty of the problem seems to increase as the value of k
increases. Thus although Suderman gave a linear-time algorithm in [11] that de-
cides whether a planar graph admits a special variant of upright drawing, called
a proper drawing on three layers, he acknowledges that his algorithm approach
is hard to extend for four or more layers. In this context, the ideas developed in
our algorithm can be seen as a base to be exploited to design practically feasible
and implementable algorithms for upright or proper drawings of planar graphs
on three or more layers. It is also an interesting open problem to give an al-
gorithm that obtains an upright drawing of a planar graph G on the minimum
number of layers.
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4. V. Dujmović, M. R. Fellows, M. T. Hallett, M. Kitching, G. Liotta, C. McCartin,

N. Nishimura, P. Ragde, F. A. Rosamond, M. Suderman, S. Whitesides, and D. R. Wood,
On the parameterized complexity of layered graph drawing, Proceedings of the 9th Annual
European Symposium on Algorithms (ESA), 2161, Lecture Notes in Computer Science,
Springer-Verlag, (2001), 488-499.
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