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A MODIFIED BFGS BUNDLE ALGORITHM BASED ON

APPROXIMATE SUBGRADIENTS
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Abstract. In this paper, an implementable BFGS bundle algorithm for
solving a nonsmooth convex optimization problem is presented. The typical
method minimizes an approximate Moreau-Yosida regularization using a
BFGS algorithm with inexact function and the approximate gradient values
which are generated by a finite inner bundle algorithm. The approximate
subgradient of the objective function is used in the algorithm, which can
make the algorithm easier to implement. The convergence property of the
algorithm is proved under some additional assumptions.
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1. Introduction

Consider the following unconstrained optimization problem

(1) min f(x) s.t. x ∈ Rn

where the objective function f : Rn → R is a possibly nondifferentiable convex
function. The following corresponding optimization problem is considered

(2) minF (x) s.t. x ∈ Rn

where F : Rn → R is the Moreau-Yosida regularization of f , which the objective
function F is defined as

(3) F (x) = min
z∈Rn

{
f(z) + (2λ)−1‖z − x‖2},

where the parameter λ is a fixed positive number and ‖ ·‖ denotes the Euclidean
norm or its induced matrix norm on Rn×n. It is well known that F is a con-
tinuously differentiable convex function defined on Rn even though f may be
nondfferentiable. The derivative of F at x is defined by

(4) G(x) = ∇F (x) = λ−1(x− p(x)) ∈ ∂f(p(x)),
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where p(x) is the unique minimizer in (2) and ∂f is the subdifferential mapping
of f [1].

The approximate subdifferential of f at x is defined as ∂εf(x) = {η ∈
Rn|f(z) ≥ f(x)+ηT (z−x)−ε}, where η is called an approximate subgradient of
f at x. There are several reasons for dealing with approximate subgradients. If a
subgradient g(x) ∈ ∂f(x) is hard to compute, one can take an already computed
subgradient g(x) of f at some point x near x. Then

f(x) + g(x)T (z − x) = f(x) + g(x)T (z − x) + ε ≤ f(z) + ε,

where ε = f(x)− f(x)− g(x)T (x− x) ≥ 0. Thus g(x) ∈ ∂εf(x), which indicates
that g(x) is an approximate subgradient of f at x. In this paper, assume that
we have a black box which provides at each x ∈ Rn and we have

(5) ga(x, ε) ∈ ∂εf(x)

for given ε > 0.
The purpose of this paper is to present an implementable algorithm for solv-

ing (1) by combing Morean-Yosida regularization, bundle concept and BFGS
method. By using the approximate subgradient, the algorithm presented in this
paper become convenient to implement. Some notations which would be used
in the following are listed.

Subdifferential: ∂f(x) = {ξ ∈ Rn|f(x) ≥ f(x) + ξT (z − x),∀z ∈ Rn},
the subdifferential of f at x, and each such ξ is called a subgradient of f
at x.

Gradient: G(x) = λ−1(x− p(x)), the gradient of F at x.
Unique minimizer: p(x) = argminz∈Rn{f(z) + (2λ)−1‖z − x‖2}, the

unique minimizer of (3).

Hiriart-Urruty and Lemarechal [2] has proved that the optimization problem
(1) and (2) are equivalent in the sense that the solution sets of the two problems
coincide with each other. Related on this subject appears in [2, 3, 4, 5]. In
particular, Mifflin [4] proved the global convergence results for a quasi-Newton
bundle method by assuming that at each x ∈ Rn one exact subgradient of the
objective function f can be found. But it is very difficult to compute subgra-
dients accurately. In this paper, we consider using approximate subgradients of
the objective function f instead of the exact one, which can make the imple-
ment of the algorithm very easy. Using the BFGS algorithm, the quasi-Newton
algorithm is used to find the decrease direction. It was shown that Broyden’s
class of quasi-Newton algorithm converges globally and superlinearly [6, 7]. Byrd
[8, 9] proved global and superlinear convergence of the convex Broyden’s class
with Wolfe-type line search and the global convergence of BFGS algorithm with
backtracking line search. Li[10] proved that when the objective function f is a
convex quadratic function, DFP algorithm has global convergence property. The
convergence properties of the BFGS method for convex minimization have been
studied by many researchers. There have already been a lot of achievements in
global convergence properties of BFGS algorithm [11, 12, 13, 14, 15, 16]. Fletcher
gave a review of unstrained optimization [17].
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In the section 2 and 3, using the bundle method, we discuss how to approx-
imate the unique minimizer p(x) of (3), and give the BFGS bundle algorithm
based on the approximate subgradient. The convergence property is proved in
section 4. Finally, some conclusions and discussions are give.

2. The BFGS algorithm and the bundle idea

We first recall the steps of the standard BFGS method. The sequence {xk}
generated by the standard BFGS method with line search is determined by
letting xk+1 = xk+αkpk, where pk is a solution of the following system of linear
equation

(6) Bkp+ g(xk) = 0.

αk is the step length. The matrix Bk in the standard BFGS method is updated
by the formula:

(7) Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

yTk sk
,

where sk = xk+1 and yk = ∇f(xk+1)−∇f(xk).
The bundle idea plays a central role in approximating F (x) and ∇F (x) as is

developed in [5]. Let d = z − x in (3) and minimize over d instead of z. Then
we have

(8) F (x) = min
d∈Rn

{f(x+ d) + (2λ)−1‖d‖2}.
Considering approximating f(x+ d) by using the bundle method. According to
the assumption presented in the introduction, for all yi ∈ Rn and ∀εi > 0, i =
1, 2, · · · , j, we can compute f(yi) and one ga(yi, εi) ∈ ∂εif(y

i), which means

(9) f(z) ≥ f(yi) + ga(yi, εi)
T (z − yi)− εi, ∀z ∈ Rn.

Then a polyhedral function

(10) f̌a(x+ d) = max
i=1,··· ,j

{
f(yi) + ga(yi, εi)

T (x+ d− yi)− εi
}
,

where εi is updated by the rule εi+1 = γεi, 0 < γ < 1. Then we have f(x+ d) ≥
f̌a(x+d). If the linear error α(x, yi, εi) is defined by α(x, yi, εi) = f(x)−f(yi)−
ga(yi, εi)

T (x− yi), then (10) can be written as

(11) f̌a(x+ d) = f(x) + max
i=1,··· ,j

{
ga(yi, εi)

T d− α(x, yi, εi)− εi
}
.

Let

(12) F̌ (x) = min
d∈Rn

{
f̌a(x+ d) + (2λ)−1‖d‖2}.

If d(x) solves (12) and let v(x) = maxi=1,··· ,j
{
ga(yi, εi)

T d(x) − α(x, yi, εi) −
εi
}
, then F̌ (x) = f(x) + v(x) + (2λ)−1d(x)T d(x). Let a(x) = x + d(x) be an

approximation of the one in (3), then one has

F̂ (x) = f(a(x)) + (2λ)−1d(x)T d(x).

Then six properties of the functions defined above can be given, which will be
used in the follows [18].
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P1: F̌ (x) ≤ F (x) ≤ F̂ (x).

P2: F̂ (x) = F (x) if and only if a(x) = p(x).

P3: Let ε(x) = F̂ (x)− F̌ (x) and δ(x) is a given positive number. Suppose
that x is not the minimizer of f . If

ε(x) < δ(x)min{λ−2d(x)T d(x),M}
is never satisfied, then ε → 0 as j → ∞.

P4: Let Ĝ(x) = λ−1(x−a(x)) = −λ−1d(x). Then one has ‖G(x)−Ĝ(x)‖ =

‖λ−1(p(x)− a(x))‖ ≤
√

2a(x)
λ .

P5: If x does not minimize f , then we can find one solution d(x) of (12)

such that F̂ (x) − F̌ (x) < δ(x)min{λ−2d(x)T d(x),M} holds, where M
is a given positive number.

3. The BFGS bundle algorithm based on approximate subgradient

The notations a(xk), d(xk) are abbreviated as ak, d
k. Given positive numbers

π, ν, γ,M such that π < 0.5, ν < 1, 0 < γ < 1, and one n×n symmetric positive
definite matrix RN .

The BFGS bundle algorithm:

Step 0(initialization): Choose a sequence of positive numbers {δk}∞k=0

such that
∑∞

k=0 δk < ∞. Let x0 be a starting point and B0 be a initial
symmetric positive definite matrix. Set k = 0 and find d0 and a0 which
satisfying

a0 ≤ δ0 min{λ−2(d0)T d0,M}.
Let ε1 be a positive number and start the bundle process with j = 0 and
y0 = x0.

Step 1(compute a search direction): Compute a(xk) by the bundle

process where εi is updated by εi+1 = γεi. Compute Ĝ(xk). If ‖Ĝ(xk)‖ 6=
0, compute

(13) sk = −B−1
k Ĝ(xk).

Otherwise, stop.
Step 2(line search): Starting with u = 1, let ik be the smallest nonneg-

ative integer u such that

(14) F̌ (xk + νksk) ≤ F̂ (xk) + πνu(sk)T Ĝ(xk),

where Fa(xk + νks
k) satisfies

(15) F̌ (xk + νksk)− F̂ (xk + νksk) ≤ δk+1 min{λ−2d(xk + νksk)T d(xk + νksk),M}.
Set tk = νik and xk+1 = xk + tksk.

Step 3(update Bk): Let δxk = xk+1 − xk and δyk = Ĝ(xk+1) − Ĝ(xk).
If (δxk)δyk > 0, update Bk to Bk+1 by the following way to satisfy
Bk+1δxk = δyk,

(16) Bk+1 = Bk − Bkδxkδx
T
kBk

δxk
TBkδxk

+
δykδyk

T

δyk
T δxk

.
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Otherwise set Bk+1 = RN . Set k = k + 1 and goto Step 1.

End of the algorithm

4. The global convergence

Theorem 1. Given c3 ∈ (0,∞) and c4 ∈ (0, 1), if the following conditions are
hold, δxT δy > 0.

(17) ‖δxk‖(
√
2εk +

√
2εk+1) ≤ c3(δxk)

T δyk,

(18) 2‖δyk‖(
√
2εk +

√
2εk+1) ≤ min{c4, δ1/3k + δ

1/3
k+1‖δyk‖2}.

Proof. Let δȳk = G(xk+1)−G(xk). From P4, one has

(δxk)
T δyk = (δxk)

T δȳk + (δxk)
T (δyk − δȳk)

≥ (δxk)
T δȳk − ‖δxk‖‖δyk − δȳk‖

≥ (δxk)
T δȳk − ‖δxk‖(‖Ĝ(xk)−G(xk)‖+ ‖Ĝ(xk+1 −G(xk+1))‖)

≥ (δxk)
T δȳk − ‖δxk‖(

√
2εk +

√
2εk+1)

≥ 1

1 + c3
(δxk)

T δȳk.

and

‖δȳk‖2 = ‖δyk‖2 + ‖δȳk − δyk‖2 + 2(δyk)
T (δȳk − δyk)

≥ ‖δyk‖2 − 2‖δyk‖‖δȳk − δyk‖

≥ ‖δyk‖2 − 2‖δyk‖(
√
2εk +

√
2εk+1)

≥ ‖δyk‖2 +min{c4, δ1/3k + δ
1/3
k+1‖δyk‖2}

≥ (1− c4)‖δyk‖2.
So, if conditions (17) and (18) are satisfied, then (δxk)

T δyk ≥ 1
1+c3

(δxk)
T δȳk

and ‖δȳk‖2 ≥ (1− c4)‖δyk‖2. ¤
Lemma 1. For any nonnegative sequence {δk}k≥0, if

∑∞
k=0 δk < ∞, then

(19)

∞∏

k=0

(1 + δk) < ∞.

Proof. This result follows easily from the properties of logarithms. ¤
Lemma 2. Relative to the line search there exist positive constants η1 and η2
such that either [4]

F̌ (xk + τksk) ≤F̂ (xk)− η1
[(sk)T Ĝ(xk)]

2

‖sk‖2

− η1
1− σ

(sk)T [G(xk)− Ĝ(xk)][(s
k)T Ĝ(xk)]

‖sk‖2
(20)
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or

(21) F̌ (xk + τksk) ≤ F̂ (xk) + η2(s
k)T Ĝ(xk).

Theorem 2. Suppose that F is strongly convex on D and {Bk} is generated by
the BFGS bundle-type method and xk 6= x̄ for all k ≥ 0. Then {xk} converges
to the unique solution x̄.

Proof. Let K := {0} ∪ {j|(17)or(18) does not hold for k = j − 1} ≡
{k0, k1, · · · , ki, · · · }. Therefore, Bj = M for j ∈ K and Bj is a BFGS update of
Bj−1 for j /∈ K.

Suppose that K has an infinite number of elements. Since F is strongly
convex on D and G is globally Lipschitz continuous, from theorem 1, one has
(δxk)

T δȳk ≥ α‖δxk‖2 and (δxk)
T δȳk ≥ λ‖δȳk‖2. From Theorem 2.1 in [9],

given w ∈ (0, 1), there exist constants β, β
′
> 0 such that for any k satisfying

ki−1 ≤ k < ki − 1, where ki−1, ki ∈ K for some i ≥ 1, the inequalities cosθj ≥ β

and
Bjδxj

‖δxj‖ ≤ β
′
hold. Since Bj = M if j ∈ K, we can assume β and β

′
are such

that the above two inequalities hold for all j ∈ K. Define I to be the set of j

for that cos θj ≥ β and
Bjδxj

‖δxj‖ ≤ β
′
hold. Since D is bounded, {‖G(xk)‖} is a

bounded sequence. From P4,

(22) λ−1d(x)T d(x) = (Ḡ(x))TλḠ(x)

and (15), ‖G(xk)− Ĝ(xk)‖ = o(‖Ĝ(xk)‖), so there exist an integer k̄ such that
for all k ≥ k̄

(23) 2‖G(xk)‖ ≥ ‖Ḡ(xk)‖ ≥ 1

2
‖G(xk)‖,

(24)
∣∣∣− (sk)T [G(xk)− Ḡ(xk)][(s

k)T Ḡ(xk)]

‖sk‖2
∣∣∣ ≤ (1− σ)β2

2
‖Ḡ(xk)‖2.

Consider an iterate xj with j ∈ I and j ≥ k. From Lemma 2, (24) and the above
two inequalities, one has

(25) F̂ (xj)− F̂ (xj + τjs
j) ≥ η‖Ḡ(xj)‖2,

where η = 1
2η1β

2 if (20) holds or η = η2
β

β′ if (21) holds. Thus, from (23) and

(25), for all j ∈ I and j ≥ k,

(26) F̂ (xj)− F̂ (xj + τjs
j) ≥ η

4
‖G(xj)‖2.

Because F is strong convex and according Lemma 4.3 in [19], for all k ≥ 0,

(27)
1

2
α‖xk − x̄‖2 ≤ F (xk)− F (x̄) ≤ 2

α
‖G(xk)‖2.

Then, from P1, P2, (26) and the right-side inequality in (27), for all j ∈ I and
j ≥ k,

(28) F (xj+1)− F (x̄)− εj+1 ≤
(
1− ηα

8

)
(F (xj)− F (x̄)) + εj .
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Since {δk} → 0, we can take k̄ large enough such that for all k ≥ k̄

(29)
16δkλ

α
≤ min

{
1,

ηα

8

}
.

By (15), (22), (23), the fact that G(x̄) = 0, the Lipschitz continuity of G, and
(27), for all k ≥ k̄ one has

(30) εk ≤ 4δkλ‖xk − x̄‖2 ≤ 8δkλ

α
(F (xk)− F (x̄)).

Then from (28)-(30), for all j ∈ I and j ≥ k̄, we have

(31)
(
1− 8δj+1λ

α

)
(F (xj+1)− F (xj)) ≤

(
1− 1

16
ηα

)
(F (xj)− F (x̄)).

Since F (xk) > F (x̄) for all k, (31) and (29) imply 1− 1
16ηα > 0. For w ∈ (0, 1),

let r = (1− 1
16ηα)

w so that in (31)

(32) 1− 1

16
ηα = r1/w.

From (13), (14), the positivity of σ and τk, and the positive definiteness of Bk,
one has

(33) F̌ (xk+1) < F̂ (xk) for all k.

Combining this with (30), P1, and P2 yields for all j ≥ k̄
(
1− 8

δj+1λ

α

)
(F (xj+1)− F (x̄)) ≤

(
1 + 8

δjλ

α

)
(F (xj)− F (x̄)).

For k ≥ k̄, let

δ
′
k =

1 + 8
δjλ
α

1− 8
δj+1λ

α

.

For any k ≥ k̄, there exists ki−1, ki ∈ K such k satisfies ki−1 ≤ k < ki. If
ki − ki−1 ≤ 2, for ki−1 ≤ k < ki,

F (xk+1)− F (x̄) ≤
k∏

j=ki−1

δ
′
jr(F (xki−1)− F (x̄))

≤
k∏

j=ki−1

δ
′
j(r

1/2)k−ki−1+1(F (xki−1)− F (x̄)).

(34)

On the other hand, if ki − ki−1 ≤ 2, then when ki−1 ≤ k < ki − 1, from Lemma
5.2 in [20], there are at least [w(k − ki−1 + 1)] elements in I ∩ [ki−1, k]. So for
all k satisfying ki−1 ≤ k < ki − 1, one has

(35) F (xk+1)− F (x̄) ≤
k∏

j=ki−1

δ
′
jr

k−ki−1+1(F (xki−1)− F (x̄)).

Therefore,

(36) F (xki
)− F (x̄) ≤ δ

′
ki−1(F (xki−1)− F (x̄)) ≤

ki−1∏

j=ki−1

δ
′
jr

ki−ki−1+1(F (xki−1)− F (x̄)).
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So, from (34)-(36), for all k satisfying ki−1 ≤ k < ki, one has

(37) ]F (xk+1)− F (x̄) ≤
k∏

j=ki−1

δ
′
jr

k−ki−1+1(F (xki−1
)− F (x̄).

Without loss of generality, we can assume that k ∈ K. Then, from (37), for any
k ≥ k̄, one has

(38) F (xk+1)− F (x̄) ≤
k∏

j=k̄

δ
′
j(r

1/2)k−k̄+1(F (xk̄)− F (x̄).

Since
∑∞

k=0 δk∞,
∑

k=k̄∞(δ
′
k) < ∞. So, from Lemma 1, there exist a constant

C > 0 such that

(39)

∞∏

k=k̄

δ
′
k ≤ C.

Then, for all k ≥ k̄

(40) F (xk+1)− F (x̄) ≤ C(r1/2)k−k̄+1(F (xk̄)− F (x̄)).

Using (27), (40), and the fact that r < 1, one has

∞∑

k=k̄

‖xk − x̄‖ ≤ (2/α)1/2
∞∑

k=k̄

(F (xk)− F (x̄))1/2

≤
[2C(F (xk̄)− F (x̄))

α

]1/2 ∞∑

k=k̄

(r1/4)k−k̄ < ∞.

(41)

Therefore, the algorithm has global convergence property. If there are only
finitely many elements in K, then we can prove the same results as in the case
where there are infinitely many elements in K. ¤

5. Conclusion

In summary, this paper presents a BFGS bundle algorithm for nonsmooth
convex unstrained program. The global convergent BFGS bundle-type method
for the case where the Moreau-Yosida regularization function F and its gradient
G are computed by the approximate subgradient. The approximate subgradient
of the objective function is used in the algorithm, which can make the algorithm
easier to implement. The algorithm does not need require the original objective
to be differentiable at the solution.
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