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DYNAMICS OF A SINGLE SPECIES POPULATION IN A

POLLUTED ENVIRONMENT

A. K. PAL AND G. P. SAMANTA∗

Abstract. In this paper, we have studied the dynamical behaviour such
as boundedness, local and global stabilities, bifurcation of a single species
population affected by environmental toxicant and population toxicant. We
have also studied the effect of discrete delay of the environmental toxicant
on the instantaneous growth rates of the population biomass and popu-
lation toxicant due to incubation period. The length of delay preserving
the stability is also estimated. Computer simulations are carried out to
illustrate our analytical findings.
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1. Introduction

Today, the most endangering problem to the society is the change in environ-
ment caused by pollution, affecting the long term survival of species, human life
style and biodiversity of the habitat. The question of the effects of pollutants
and toxicants on ecological communities is of tremendous interest from both en-
vironmental and conservational points of view. Therefore it is becoming utmost
important to study the effects of toxicant on the population and the assessment
of the risk to populations. In recent years, many countries have already realized
that the pollution of the environment is a very urgent problem since the change
in environment caused by pollution, affecting the long term survival of species,
human life style and biodiversity of the habitat. Therefore the research of the ef-
fects of toxicant on the population and the assessment of the risk to populations
are becoming more important.
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Acid rain results from certain kinds of air pollution that mix with precipita-
tion, such as rain or fog, then falls to earth as an acidic solution and its major
components are oxides of sulfur and nitrogen that are mainly the by-products
of coal-burning power plants, copper melting, factory and automobile emissions.
These oxides are chemically changed in the atmosphere and return to the earth
as rain, snow, fog or dust. In the United States, the mostly recognized form of
acid rain results from sulfur dioxide emissions, which are converted into sulfu-
ric acid in the atmosphere. When this is mixed with precipitation and falls to
earth, the effect is precisely like pouring a diluted acid solution on everything it
touches. In lakes also, this acidification process can change ecological structures.
In this way toxic substances are invaded into the ecological communities [14,15].
By using mathematical models, Hallam and Clark [10], Hallam et. al. [11,12],
Hallam and De Luna [13], De Luna and Hallam [2], Freedman and Shukla [5],
Ghosh et. al. [7], Li et. al. [17], Wang [22] and many others studied the ef-
fects of toxic substances on various ecosystems. Recently Pal and Samanta [21]
have analyzed the dynamical behaviours of a single species growth model with
time delay under the influence of environmental and population toxicants where
population toxicant is subject to exogeneous toxicant input.

Bunomo et. al. [1] viewed the internal toxicant as drifted by the living
population and then, by balance arguments, they obtained a partial differential
equation system consisting into two reaction diffusion equations coupled with
a first order convection equation, and the corresponding ordinary differential
equation system was derived as well. This model is the most realistic by now
but the analysis of it is too difficult that they only used some analytical and
numerical approaches.

In recent times, it is well understood that many of the processes, both natural
and manmade, in ecology, medicine et cetra involve time-delays. Time-delays
occur so often, in almost every situation, that to ignore them to ignore reality.
Now it is beyond doubt that in an improved analysis, the effect of time-delay
due to the reaction time or the activation period has to be taken into account.
Time delay is also used to model the gestation lag, the incubation time for a
infectious vector etc. Detailed arguments on the importance and usefulness of
time-delays in realistic models may be found in the classical books of Macdonald
[19], Gopalswami [8], Kuang [16].Thus ”Ordinary Differential Equation”, which
is the heart of the Mathematical ecology, should be replaced by ”Delay Dif-
ferential Equation”. In general, delay-differential equations exhibit much more
complicated dynamics than ordinary differential equations since a time delay
could cause a stable equilibrium to become unstable and cause the populations
to fluctuate.

In the present work, we have investigated the dynamical behaviours and the
effect of discrete delay of the model made by Bunomo et. al. [1] and Li et. al.
[17]. Here we have studied the boundedness, local and global stabilities of the
non-trivial equilibrium point and bifurcation analysis of this system. We have
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also studied the effect of discrete time delay of the environmental toxicant on the
instantaneous growth rates of the population biomass and population toxicant.

The rest of the paper is structured as follows: In section 2, we present a
brief sketch of the construction of the model, which may indicate the ecological
relevance of it and also discussed the boundedness of the system (2.3). In section
3, we find out the necessary and sufficient conditions for the existence of the
equilibrium points of the system (2.3) for zero exogeneous and non zero constant
exogeneous toxicant input into the environmental toxicant and study its stability.
Computer simulations of some solutions of the system (2.3) are also presented in
this section. The occurrence of Hopf bifurcation is shown in section 4. It seems
also reasonable to assume that the effect of the environmental toxicant on the
population growth will not be instantaneous, but mediated by some discrete time
lag τ required for incubation. The effect of discrete time-delay on system (2.3)
is studied in section 5. In section 6, computer simulation of variety of numerical
solutions of the system with delay is presented. In section 7, we calculate the
length of delay for which the system preserves stability. Section 8 contains the
general discussions of the paper.

2. The Basic Mathematical Model

The model we analyze in this paper describes the effect of toxicant on a single
species. Here we take [17],
X(t) : Concentration of the population biomass.
Y (t) : Concentration of the toxicant in the environment.
Z(t) : Concentration of the toxicant in the population.
The model satisfies the following assumptions:
(A1) There is a given toxicant in the environment and the living organisms ab-
sorb into their bodies part of this toxicant so that the dynamics of the population
is affected by this toxicant.
(A2) For the growth rate of population we assume that the birth rate is b0−fX
and the death rate is d0 +αY , where b0, f, d0, α are assumed to be positive con-
stants.
We consider the model

dX

dt
= X (b0 − d0 − αY − fX)

dY

dt
= kZ − (r +m+ b0 − fX)Y + u (t)

dZ

dt
= −kZX + (r + d0 + αY )Y X − hZ

(2.1)

with initial data X (0) ≥ 0, Y (0) ≥ 0, Z (0) ≥ 0
To explain the parameters, we note that α is the depletion rate of toxicant in
the environment due to organismal pollutant concentration, k is the depletion
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rate of toxicant in the environment due to its intake made by the population,
r is the depletion rate of toxicant in the population due to egestion, m is the
depletion rate of toxicant in the population due to metabolization processes, h
is the depletion rate of the toxicant in the environment and u (t) ≥ 0, ∀ t ≥ 0, is
the exogeneous toxicant input rate which is assumed to be bounded [17]. Here
b0, f, d0, α, k, r,m, h are assumed to be positive constants.

We can see that if b0 − d0 − αY ≤ 0, X (t) will be extinct after sometime, so
we suppose

p = b0 − d0 > 0, Y (t) <
b0 − d0

α
, ∀ t ≥ 0 (2.2)

The model we have just specified has nine parameters, which makes the analy-
sis difficult. To reduce the number of parameters and to determine which combi-
nations of parameters control the behaviour of the system, we nondimensionlize
system (2.1), so we choose

x = fX, y = αY and z = kαZ

Then the system (2.1) take the form (after some simplification)

dx

dt
= x (p− y − x)

dy

dt
= z − (q − x) y + γ (t)

dz

dt
= −axz + a (d+ y)xy − hz

(2.3)

with initial data
x (0) ≥ 0, y (0) ≥ 0, z (0) ≥ 0 (2.4)

where p = b0−d0, q = r+m+b0, a = k
f , d = r+d0, γ (t) = αu (t) ≥ 0 ∀ t ≥ 0.

Therefore, from (2.2), we have

y(t) < p, ∀ t ≥ 0 (2.5)

Proposition 2.1. Each component of the solution of system (2.3) subject to
(2.4) are non-negative and bounded for all t > 0.

Proof. Since the right hand side of system (2.1) is completely continuous and
locally Lipschitzian on C, the solution (x(t), y(t), z(t)) of (2.3) with initial con-
ditions (2.4) exists and is unique on [0, β), where 0 < β ≤ +∞ [9, Chapter 2].
Now, from the first equation of system (2.3), we have

x(t) = x(0) exp

∫ t

0

{p− y(s)− x(s)}ds ≥ 0, ∀ t ≥ 0.

Next, we show that y(t) ≥ 0 for all t ∈ [0, β), where 0 < β ≤ +∞. Otherwise,
there exists a t1 ∈ [0, β) such that y(t1) = 0, ẏ(t1) < 0 and y(t) ≥ 0 for all t ∈
[0, t1]. Hence there must have z(t) ≥ 0 for all t ∈ [0, t1]. If this statement is not
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true, then there exists a t2 ∈ [0, t1) such that z(t2) = 0, ż(t2) < 0 and z(t) ≥
0 for all t ∈ [0, t2]. From the third equation of (2.3), we have:

ż(t2) = a (d+ y(t2))x(t2)y(t2) ≥ 0,

which is a contradiction with ż(t2) < 0. So z(t) ≥ 0 for all t ∈ [0, t1]. Now from
the second equation of (2.3), we have:

ẏ(t1) = z(t1) + γ (t1) ≥ 0 as γ (t) ≥ 0 ∀ t ≥ 0,

which is a contradiction with ẏ(t1) < 0. So y(t) ≥ 0, ∀ t ≥ 0 and hence
z(t) ≥ 0, ∀ t ≥ 0. Therefore,

x(t) ≥ 0, y(t) ≥ 0, z(t) ≥ 0, ∀ t ≥ 0. (2.6)

From the first equation of (2.3) and (2.6), we have:

dx

dt
= x (p− y − x) ≤ p

(
x− x2

p

)

Therefore, by a standard comparison theorem, we have,

lim sup
t→∞

x (t) ≤ p. (2.7)

From the third equation of (2.3),(2.5),(2.6) and (2.7), we have:

dz

dt
< a (d+ p) px− hz ⇒ lim sup

t→∞
z(t) ≤ a(d+ p)p2

h
(2.8)

From (2.5)-(2.8), we conclude that each component of the solution of system (2.3)
subject to (2.4) are non-negative and bounded for all t > 0. This completes the
proof of the proposition.

3. Stability behaviour of the model

Case I : Zero exogeneous input (γ (t) = 0)

If γ (t) = 0, then the model (2.3) has two non-negative equilibria in xyz-plane,
namely E0 (0, 0, 0) and E1 (p, 0, 0). It is noted here that the other equilibrium
point (x∗, y∗, z∗) is not feasible, since

x∗ =
hq

h− am
, y∗ =

−h(r +m+ b0)− apm

h− am
, p > 0 by (2.2),

are opposite in sign. The variational matrices of system (2.3) at E0 and E1 are
respectively

V (E0) =



p 0 0
0 −q 1
0 0 −h


 , V (E1) =



−p −p 0
0 −(q − p) 1
0 adp −(ap+ h)




It is obvious that E0 is unstable ( hyperbolic saddle ) in the direction orthogonal
to yz-plane. The characteristic equation of V (E1) is (p+ λ)

(
λ2 +Bλ+ C

)
= 0,

where B = ap+h+ q−p = ap+h+d0+ r+m > 0 and C = (ap+ h) (q − p)−
apd = ap(q−p−d)+h(q−p) = apm+h(d0+ r+m) > 0, since p > 0 by (2.2).
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The eigenvalues are λ1 = −p and λ2,3 = −B±√
B2−4C
2 . Since B > 0, C > 0,

therefore the signs of the real parts of λ2, λ3 are negative. This implies that E1

is locally asymptotically stable.

Case II : Non-zero exogeneous input (γ (t) = Q > 0)

When (γ (t) = Q > 0), the model (2.3) has two non-negative equilibria,

E2

(
0, Q

q , 0
)

and E (x, y, z). The variational matrix of system (2.3) at E2 is

given by

V (E2) =




p− Q
q 0 0

Q
q −q 1

aQ
q

(
d+ Q

q

)
0 −h




The characteristic equation of V (E2) is
(
p− Q

q − λ
)
(q + λ) (h+ λ) = 0. So, if

E2 exists, then it is asymptotically stable if and only if pq < Q and if pq > Q,
E2 is unstable in the direction to yz plane.

Lemma 3.1. The unique interior equilibrium point E (x, y, z) of system (2.3)
exists if and only if the following two conditions are satisfied

(i) am > h and (ii) pq > Q

If these conditions are satisfied, then x, y, z are given by

x =
A− hq − aQ+ p (am− h)

2 (am− h)
, y = p− x, z = (q − x) (p− x)−Q

where

A =

√
{hq + aQ− p (am− h)}2 + 4h (am− h) (pq −Q) and m = q − p− d.

Local Stability of E
The variational matrix at E is given by

V
(
E
)
=



m11 m12 0
m21 m22 m23

m31 m32 m33




where

m11 = −x, m12 = −x, m21 = y, m22 = − (q − x) , m23 = 1,

m31 = −az + ay (d+ y) , m32 = ax (d+ 2y) , m33 = − (ax+ h)

The characteristic equation is

λ3 +A1λ
2 +A2λ+A3 = 0

where
A1 = −m11 −m22 −m33 = −tr

[
V
(
E
)]

,

A2 = m11m22 +m11m33 +m22m33 −m23m32 −m12m21,

A3 = −det
[
V
(
E
)]

= m11m23m32 +m12m21m33 −m11m22m33 −m12m23m31.
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By the Routh-Hurwitz criterion, it follows that all eigenvalues of characteristic
equation have negative real part if and only if

A1 > 0, A3 > 0, A1A2 −A3 > 0.

Proposition 3.1. E is locally asymptotically stable if and only if the above
inequalities are satisfied.

Global Stability of E
E is not always globally asymptotically stable. In the following, we able to

write down conditions, which guarantee the global stability of E.

Theorem 3.1. Since x (t), y (t), z (t) are bounded, let m1 ≤ x (t) ≤ M1,
m2 ≤ y (t) ≤ M2, m3 ≤ z (t) ≤ M3 where mi, Mi (i=1,2,3) are some positive
constants. If the following inequalities hold :

(M2 − 1)
2
< (q − x)

{aM2 (d+M2)− am3}2 < (ax+ h)

(1 + adx+ 2axM2)
2
< (q − x) (h+ ax)

(3.1)

then E is globally asymptotically stable.

Proof. We consider the following positive definite function about E

L (x, y, z) =
(
x− x− xln

x

x

)
+

1

2
(y − y)

2
+

1

2
(z − z)

2

Differentiating with respect to t along the solution of (2.3), we get (after some
simple calculations)

dL

dt
= − (x− x)

2
+ (y − 1) (x− x) (y − y)− (q − x) (y − y)

2

+(ay (d+ y)− az) (x− x) (z − z)− (ax+ h) (z − z)
2

+(1 + adx+ ax (y + y)) (y − y) (z − z)

≤ − (x− x)
2
+ (M2 − 1) (x− x) (y − y)− (q − x) (y − y)

2

− (ax+ h) (z − z)
2
+ (aM2 (d+M2)− am3) (x− x) (y − y)

+ (1 + adx+ 2aM2x) (y − y) (z − z)

= −a11 (x− x)
2 − a22 (y − y)

2 − a33 (z − z)
2
+ a12 (x− x) (y − y)

+a13 (x− x) (z − z) + a23 (y − y) (z − z)

where

a11 = 1, a22 = q − x, a33 = ax+ h, a13 = M2 − 1,

a13 = (aM2 (d+M2)− am3) , a23 = 1 + adx+ 2aM2x

A sufficient condition for dL
dt to be negative definite is

a212 − a11a22 < 0, a213 − a11a33 < 0, a222 − a22a33 < 0 (3.2)

Now it is easy to see that if conditions (3.1) hold then (3.2) will hold auto-
matically. Hence L is a Lyapunov functions with respect to all solutions in the
interior of the positive orthant, proving the theorem.
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We choose the parameters of the system (2.3) as p = 2.75 q = 3.05, a =
4.1429, d = 0.7, h = 0.2, Q = 0.6, and (x(0), y(0), z(0)) = (1, 1, 5). Then the
conditions of Proposition 3.1 is satisfied as A1 = 5.1630 > 0, A3 = 1.2982 >
0, ∆ = 0.1712 > 0 and consequently E (x, y, z) = (0.4617, 1.7883, 4.0284) is
locally asymptotically stable. The phase diagram is shown in Fig. 1(a). The
xy-plane and xz-plane projections of the solution are shown in Fig. 1(b) and
Fig. 1(c) respectively. Clearly the solution is a stable spiral converging to E.
Fig. 1(d) shows that x, y and z populations approach to their steady-state values
x, y and z respectively in finite time.
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Fig. 1. Here x(0) = 1.0, y(0) = 1.0, z(0) = 5.0 and p = 2.75, q = 3.05, a = 4.1429,

d = 0.7, h = 0.2, Q = 0.6. (a) Phase portrait of the system (2.3) showing that E

is locally asymptotically stable. (b) xy-plane projection of the solution. (c) xz-plane

projection of the solution. (d) Top curve depicts z(t), middle one depicts y(t) and the

bottom one depicts x(t). Clearly the x, y, z populations approach to their equilibrium

values in finite time.
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4. Bifurcation Analysis

It is really difficult to establish an analytical criterion for the existence of
Hopf bifurcation for the model (2.3) by using either Hopf bifurcation Theorem
[20] or Liu’s criterion [18]. Let us choose the parameters as p = 2.75, a =
4.1429, d = 0.7, h = 0.2, Q = 0.6. If q = 3.05, then we have seen that E is
locally asymptotically stable. Now if we decrease the value of the parameter
q, keeping other parameters fixed, the stability behaviour of the system (2.3)
changes at the bifurcation value q∗ = 3.02. For q = 2.98 < q∗, we see that
E (0.4528, 1.7972, 3.9419) is unstable and there is a limit cycle near E which is
shown in Fig. 2.
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Fig. 2. Here x(0) = 1.0, y(0) = 1.0, z(0) = 5.0 and p = 2.75, q = 2.98, a =

4.1429, d = 0.7, h = 0.2, Q = 0.6. Phase portrait of the system (2.3) showing a

periodic orbit near E.

5. Model with discrete delay

It is already mentioned that time-delay is an important factor in biological
system. It is also reasonable to assume that the effect of the environmental
toxicant on the population growth will not be instantaneous, but mediated by
some discrete time lag τ required for incubation. As a starting point of this
section, we consider the following generalization of the model (2.3) involving
discrete time-delay :

dx

dt
= x (p− y (t− τ)− x)

dy

dt
= z − (q − x) y +Q

dz

dt
= −axz + a (d+ y (t− τ))xy − hz

x (0) ≥ 0, y (θ) ≥ 0, z (0) ≥ 0, θ ∈ [−τ, 0]

(5.1)
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All parameters are the same as in system (2.3) except that the positive constant
τ represents the activation period or reaction time of the toxicant in the envi-
ronment.
The system (5.1) has the same equilibria as in the previous case. The main
purpose of this section is to study the stability behaviour of E (x, y, z) in the
presence of discrete delay (τ 6= 0). We linearize system (5.1) by using the fol-
lowing transformation :

x = x+ x1, y = y + y1, z = z + z1

Then linear system is given by

du

dt
= Au (t) +Bu (t− τ) (5.2)

where

u (t) = [x1 y1 z1]
T
, A = (aij)3×3 , B = (bij)3×3

and

a11 = −x, a21 = y, a22 = − (q − x) , a23 = 1, a31 = −az + a (d+ y) y,

a32 = a (d+ y)x, a33 = − (ax+ h)

and all other aij = 0; b12 = −x, b32 = axy and other bij = 0. We took for the
solution of the model (5.2) of the form u (t) = ρeλt, 0 6= ρ ∈ <. This leads to
the following characteristic equation :

λ3 + a1λ
2 + a2λ+ a3 + (a4λ+ a5) e

−λτ = 0 (5.3)

where

a1 = −a11 − a22 − a33, a2 = a11a22 + a11a33 + a22a33 − a23a32,

a3 = a11a32a23 − a11a22a33, a4 = −a23b32 − a21b12,

a5 = a11a23b32 + a21a33b12 − a23a31b12

It is well known that the signs of the real parts of the solutions of (5.3) charac-
terize the stability behaviour of E. Therefore, substituting λ = ξ + iη in (5.3)
we obtain real and imaginary parts, respectively as

ξ3−3ξη2+a1ξ
2−a1η

2+a2ξ+a3+e−ξτ {(a4ξ + a5) cos ητ + a4η sin ητ} = 0 (5.4)

3ξ2η − η3 + 2a1ξη + a2η + e−ξτ {a4η cos ητ − (a4ξ + a5) sin ητ} = 0 (5.5)

A necessary condition for a stability change of E is that the characteristic equa-
tion (5.3) should have purely imaginary solutions. Hence to obtain the stability
criterion, we set ξ = 0 in (5.4) and (5.5). Then we have,

a1η
2 − a3 = a5 cos ητ + a4η sin ητ (5.6)

−η3 + a2η = a5 sin ητ − a4η cos ητ (5.7)
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Eliminating τ by squaring and adding (5.6) and (5.7), we get the equation for
determining η as

η6 + d1η
4 + d2η

2 + d3 = 0 (5.8)

where
d1 = a21 − 2a2, d2 = a22 − 2a1a3 − a24, d3 = a23 − a25

Substituting η2 = σ in (5.8), we get a cubic equation given by

h (σ) = σ3 + d1σ
2 + d2σ + d3 = 0 (5.9)

Since d3 = a23 − a25 > 0 for the parameter values given in previous case, we
assume that d3 ≥ 0 and have the following claim.

Claim 1: If
d3 ≥ 0 (5.10)

and
d2 > 0 (5.11)

then equation (5.9) has no positive real roots. In fact, notice that

dh (σ)

dσ
= 3σ2 + 2d1σ + d2

Set,
3σ2 + 2d1σ + d2 = 0 (5.12)

Then the roots of equation (5.12) can be expressed as

σ1,2 =
−d1 ±

√
d21 − 3d2
3

(5.13)

If d2 > 0, then d21 − 3d2 < d21; that is
√
d21 − 3d2 < d1. Hence neither σ1

nor σ2 is positive. Thus equation (5.12) does not have positive roots. Since
h (0) = d3 ≥ 0, it follows that the equation (5.9) has no positive roots.
Claim 1 thus implies that there is no η such that iη is an eigen value of the
characteristic equation (5.3).Therefore, the real parts of all the eigen values of
(5.3) are negative for all delay τ ≥ 0. Summarizing the above analysis, we have
the following proposition :

Proposition 5.1. Suppose that

(i) a1 > 0, a3 + a5 > 0, a1 (a2 + a4)− (a3 + a5) > 0

(ii) d3 ≥ 0 and d2 > 0

Then the equilibrium point E of the delay model (5.1) is absolutely stable; that
is E is asymptotically stable for all τ ≥ 0.

Remark 1 : Proposition 5.1 indicates that if the parameters satisfy the condi-
tions (i) and (ii), then the steady state of the delay model (5.1) is asymptotically
stable for all delay values; that is, independent of the delay. However, we should
point out that if the conditions ( condition (ii) ) in proposition 5.1 are not sat-
isfied, then the stability of the steady state depends on the delay value and the
delay could even induce oscillation.
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For example, if (a) d3 < 0, then from equation (5.9) we have h (0) < 0 and
limσ→∞ h (σ) = ∞. Thus equation (5.9) has at least one positive root, say σ0.
Consequently, equation (5.8) has at least one positive root, denoted by η0.

If (b) d2 < 0, then
√
d21 − 3d2 > d1. By (5.13), σ1 = 1

3

(
−d1 +

√
d21 − 3d2

)
> 0.

It follows that equation (5.9), hence equation (5.8), has a positive root η0. This
implies that the characteristic equation (5.3) has a pair of purely imaginary roots
±iη0. Let λ (τ) = ξ (τ) + iη (τ) be the eigenvalues of equation (5.3) such that
ξ (τ0) = 0, η (τ0) = η0. From (5.6) and (5.7) we have,

τj =
1

η0
arccos

(
a4η

4
0 + (a1a5 − a2a4) η

2
0 − a3a5

a25 + a4η20

)
+

2jπ

η0
, j = 0, 1, 2, ...,

Also, we can verify that the following transversality conditions :

d

dτ
Re(λ(τ)) |τ=τ0=

d

dτ
ξ (τ) |τ=τ0> 0

that is

f (η0) = η2[3η4 + 2(a21 − 2a2)η
2 + (a22 − 2a1a3 − a24)] > 0 (5.14)

holds.
By continuity, the real part of λ (τ) becomes positive when τ > τ0 and the
steady state becomes unstable. Moreover, a Hopf bifurcation occurs when τ
passes through the critical value τ0. The above analysis can be summarized into
the following proposition.

Proposition 5.2. Suppose that

(i) a1 > 0, a3 + a5 > 0, a1 (a2 + a4)− (a3 + a5) > 0

If either (ii) d3 < 0 or (iii) d3 ≥ 0 and d2 < 0 is satisfied, then the steady state
E of the delay model (5.1) is asymptotically stable when 0 ≤ τ < τ0 and unstable
when τ > τ0, where

τ0 =
1

η0
arccos

(
a4η

4
0 + (a1a5 − a2a4) η

2
0 − a3a5

a25 + a4η20

)

when τ = τ0, a Hopf bifurcation occurs; that is, a family of periodic solutions
bifurcates from E as τ passes through the critical value τ0.

Proposition 5.2 indicates that the delay model could exhibit Hopf bifurcation
at certain value of the delay if the parameters satisfy the conditions in (ii) and
(iii).

6. Numerical Simulation for the model with delay

Analytical studies can never be completed without numerical verification of the
results. In this section we present computer simulation of some solutions of
the system (5.1). Beside verification of our analytical findings, these numerical
solutions are very important from practical point of view.
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It is mentioned before that the stability criteria in the absence of delay (τ = 0)
will not necessarily guarantee the stability of the system in presence of delay
(τ 6= 0). Let us choose the parameters of the system as p = 2.75 q = 3.05, a =
4.1429, d = 0.7, h = 0.2, Q = 0.6, and (x(0), y(0), z(0)) = (1, 1, 5). It is already
seen that for such choices of parameters E (x, y, z) = (0.4617, 1.7883, 4.0284)
is locally asymptotically stable in the absence of delay. Now for these choices
of parameters, it is seen from Proposition 5.2 that there is a unique positive
root of (5.9) given by σo = η20 = 0.2465 for which f (η0) = 1.9627 > 0 and
τ = τ∗ = 0.0356. Therefore by Proposition 5.2, E (x, y, z) losses its stability
as τ passes through the critical value τ∗. We verify that for τ = 0.01 < τ∗, E
is locally asymptotically stable, the phase portrait of the solution (presented in
Fig. 3a) being stable spiral. Fig. 3b shows that for the above choices of parame-
ters, x, y, z populations converge to their equilibrium values x, y, z, respectively.
Keeping other parameters fixed, if we take τ = 0.06 > τ∗, it is seen that E is
unstable and there is a bifurcating periodic solution near E (see Fig. 4a). Fig.
4b depicts the oscillations of the populations in finite time.
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Fig. 3. Here x(0) = 1.0, y(0) = 1.0, z(0) = 5.0 and p = 2.75, q = 3.05, a =

4.1429, d = 0.7, h = 0.2, Q = 0.6, and τ = 0.01 < τ∗. (a) Phase portrait of the

system. (b) Stable behaviour of x, y, z in time.
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Fig. 4. Here all other parameter values are same as in Fig. 3 except τ = 0.06 > τ∗.
(a) Phase portrait of the system (5.1) showing a limit cycle which grows out of E.

(b) Oscillations of x, y, z in time.

7. Estimation of the length of delay to preserve stability

We consider the system (2.3) and the space of all real valued continuous functions
defined on [−τ,∞] satisfying the initial conditions on [−τ, 0]. We linearize the
system (2.3) about its interior equilibrium E (x, y, z) and get

dx1

dt
= −xx1 − xy1 (t− τ)

dy1
dt

= yx1 − (q − x) y1 + z1

dz1
dt

= {−az + a (d+ y) y}x1 + a (d+ y)xy1 + axyy1 (t− τ)− (ax+ h) z1

(7.1)

where

x (t) = x+ x1 (t) , y (t) = y + y1 (t) and z (t) = z + z1 (t)

Taking laplace transform of the system given by (7.1), we get,

(s+ x)x1 (s) = −xe−sτy1 (s)−−xe−sτk1 (s) + x1 (0)
(s+ q − x) y1 (s) = yx1 (s) + z1 (s) + y1 (0)
(s+ ax+ h) z1 (s) = {−az + a (d+ y)x}x1 (s) + a (d+ y)xy1 (s)

+axye−sτy1 (s) + axye−sτk1 (s) + z1 (0)

(7.2)

where

k1 (s) =

∫ 0

−τ

e−sty1 (t) dt

and x1 (s) , y1 (s) and z1 (s) are the laplace transform of x1 (t) , y1 (t) and
z1 (t) respectively.
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From [6] and using ”Nyquist criterion” (see Appendix), it can be shown that
the conditions for local asymptotic stability of E (x, y, z) are given by [3]

ImH (iη0) > 0 (7.3)

ReH (iη0) = 0 (7.4)

where H (s) = s3 + a1s
2 + a2s + a3 + e−sτ (a4s+ a5) and η0 is the smallest

positive root of equation (7.4).

We have already shown that E (x, y, z) is stable in absence of delay. Hence, by
continuity, all eigenvalues will continue to have negative real parts for sufficiently
small τ > 0 provided one can guarantee that no eigenvalues with positive real
parts bifurcates from infinity as τ increases from zero. This can be proved by
using Butler’s lemma [3].
In this case, (7.3) and (7.4) gives

a2η0 − η30 > a5 sin (η0τ)− a4η0 cos (η0τ) (7.5)

a3 − a1η
2
0 = −a5 cos (η0τ)− a4η0 sin (η0τ) (7.6)

(7.5) and (7.6), if satisfied simultaneously, are sufficient conditions to guarantee
stability. We shall utilize them to get an estimate on the length of delay. Our
aim is to find an upper bound η+ on η0, independent of τ so that (7.5) holds for
all values of η, 0 ≤ η ≤ η+ and hence in particular at η = η0.
We rewrite (7.6) as

a1η
2
0 = a3 + a5 cos (η0τ) + a4η0 sin (η0τ) (7.7)

Maximizing a3 + a5 cos (η0τ) + a4η0 sin (η0τ)

subject to |sin (η0τ)| ≤ 1, |cos (η0τ)| ≤ 1

We obtain

a1η
2
0 ≤ a3 + |a5|+ |a4| η0 (7.8)

Hence, if

η+ =
1

2a1

[
|a4|+

√
a24 + 4a1 (a3 + |a5|)

]
(7.9)

then clearly from (7.8) we have η0 ≤ η+
From the inequality (7.5) we get

η20 < a2 + a4 cos (η0τ)− a5
η0

sin (η0τ) (7.10)

As E (x, y, z) is locally asymptotically stable for τ = 0, therefore, for sufficiently
small τ > 0, (7.10) will continue to hold. Substituting (7.7) in (7.10) and
rearranging we get,

(a5 − a1a4) [cos (η0τ)− 1] +

(
a4η0 +

a1a5

η0

)
sin (η0τ) < a1a2 + a1a4 − a3 − a5 (7.11)
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Using the bounds

(a5 − a1a4) [1− cos (η0τ)] = (a5 − a1a4) 2 sin
2
(η0τ

2

)
≤ 1

2
|a5 − a1a4| η2+τ2

and (
a4η0 +

a1a5
η0

)
sin (η0τ) ≤

(
a4η

2
+ + a1a5

)
τ

So we obtain from (7.11),

k1τ
2 + k2τ < k3

where

k1 =
1

2
|a5 − a1a4| η2+ (7.12)

k2 =
(
a4η

2
+ + a1a5

)
(7.13)

k3 = a1a2 + a1a4 − a3 − a5 (7.14)

Hence, if

τ+ =
1

2k2

[
−k2 +

√
k22 + 4k1k2

]
(7.15)

then stability is preserved for 0 ≤ τ < τ+.

8. Discussion

In this paper, we have studied the effects of environmental toxicant and popu-
lation toxicant on single species population model governed by modified logistic
equation [4]. It is shown (in proposition 2.1) that the nondimensionalized sys-
tem (2.3) is bounded, which in turn, implies that the system is ecologically well
behaved. Criterion for the long-time survival (Persistence) and extinction of
the population of the system are presented in Li et. al. [17]. In deterministic
situation, theoretical ecologists are usually guided by an implicit assumption
that most toxicant models we observe in nature correspond to stable equilibria
of the models. From this viewpoint, we have presented the stability analysis of
the most important equilibrium point E (x, y, z). The stability criteria given in
Proposition 3.1 and Theorem 3.1 are the conditions for stable coexistence of the
population biomass, the environmental toxicant and the population toxicant.

It is mentioned by several researchers that the effect of time-delay must be
taken into account to have a ecologically useful mathematical model [8,16,19]. It
seems also reasonable to assume that the effect of the environmental toxicant on
the population growth will not be instantaneous, but mediated by some discrete
time lag τ required for incubation. From this viewpoint, we have formulated
model (5.1) where the delay may be looked upon as the reaction time of the
environment toxicant on the population biomass and the population toxicant.
Then a rigorous analysis leads us to Proposition 5.1 and Proposition 5.2 which
mentions that the stability criteria in absence of delay are no longer enough to
guarantee the stability in the presence of delay, rather there is a value τ∗ of
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the delay τ such that the system is stable for τ < τ∗ and becomes unstable for
τ > τ∗.

All our important mathematical findings without and with time-delay are
numerically verified and graphical representation of a variety of solutions of sys-
tem (2.3) and (5.1) are depicted using MATLAB. Our analytical and numerical
studies show that, using the delay τ as control, it is possible to break the sta-
ble (spiral) behaviour of the system and drive it to an unstable (cyclic) state.
Also it is possible to keep the levels of single species population and toxicants
(environment and population) at a required state using the above control.

Finally, our model can be generalized in obvious ways to food chains and
competitive systems.

Appendix

Nyquist Criterion : If L be the length of a curve encircling the right half-
plane, the curve x1 (L) will encircle the origin a number of times equal to the
difference between the number of poles and the number of zeroes of x1 (L) in
the right half-plane.
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