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A NEW APPLICATION OF ADOMIAN DECOMPOSITION

METHOD FOR THE SOLUTION OF FRACTIONAL

FOKKER-PLANCK EQUATION WITH INSULATED ENDS

SANTANU SAHA RAY∗

Abstract. This paper presents the analytical solution of the fractional
Fokker-Planck equation by Adomian decomposition method. By using ini-
tial conditions, the explicit solution of the equation has been presented
in the closed form and then the numerical solution has been represented
graphically. Two different approaches have been presented in order to show
the application of the present technique. The present method performs ex-
tremely well in terms of efficiency and simplicity.
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1. Introduction

The fractional differential equations appear more and more frequently in dif-
ferent research areas and engineering applications. Nowadays, fractional diffu-
sion equation plays important roles in modeling anomalous diffusion and subd-
iffusion systems, description of fractional random walk, unification of diffusion
and wave propagation phenomenon, see, e.g. the reviews in [1-7], and references
therein.

In this paper, we shall consider the following fractional Fokker-Planck equa-
tion for force free case [8, 9,10]

∂u(x, t)

∂t
= K0D

1−γ
t

∂2u(x, t)

∂x2
, (1)

where 0D
1−γ
t is the fractional derivative defined by the Riemann-Liouville oper-

ator [11, 12],
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D1−γ
t f(t) =

1

Γ(γ)

d

dt

∫ t

0

f(ξ)dξ

(t− ξ)
1−γ

K is the diffusion co-efficient having non-ordinary dimensions and γ ∈ (0, 1) is
the anomalous diffusion exponent.

In this paper, we use the Adomian decomposition method (ADM) [13, 14]
to obtain a solution of a fractional diffusion equation (1). Large classes of lin-
ear and nonlinear differential equations, both ordinary as well as partial, can
be solved by the Adomian decomposition method [13-20]. A reliable modifica-
tion of Adomian decomposition method has been done by Wazwaz [21]. The
decomposition method provides an effective procedure for analytical solution of
a wide and general class of dynamical systems representing real physical prob-
lems [13-29]. This method efficiently works for initial-value or boundary-value
problems and for linear or nonlinear, ordinary or partial differential equations
and even for stochastic systems. Moreover, we have the advantage of a single
global method for solving ordinary or partial differential equations as well as
many types of other equations. Recently, the solution of fractional differential
equation has been obtained through Adomian decomposition method by the re-
searchers [30-37]. The application of Adomian decomposition method for the
solution of nonlinear fractional differential equations has also been established
by Shawagfeh, Saha Ray and Bera [31, 34, 36].

2. The Fractional diffusion Equation model and Application of Ado-
main Decomposition Method for its Solution

We consider the following initial conditions:

u(x, 0) = f(x), 0 < x < L (2)

and boundary conditions:

u(0, t) = u(L, t) = 0, t ≥ 0 (3)

for fractional Fokker-Planck equation (1).
We adopt Adomian decomposition method for solving eq.(1). In the light of

this method we assume that

u =

∞∑
n=0

un (4)

to be the solution of eq.(1).
Now, eq.(1) can be written as
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Ltu(x, t) = K0D
(1−γ)
t (Lxxu(x, t)) (5)

where Lt ≡ ∂
∂t which is an easily invertible linear operator, 0D

(1−γ)
t (•) is the

Riemann-Liouville derivative of order (1− γ), Lxx = ∂2

∂x2 .
We see that f(x) is a periodic function with period L. The Fourier sine series of
f(x) in [0, L] can be obtained as

f(x) =

∞∑
n=1

2

L

∫ L

0

f(ξ) sin

(
nπξ

L

)
dξ sin

(nπx
L

)
(6)

Therefore, after considering f(x) as Fourier sine series, we can take

u(x, 0) =

∞∑
n=1

2

L

∫ L

0

f(ξ) sin

(
nπξ

L

)
dξ sin

(nπx
L

)
(7)

because of the fact that Fourier sine series is well adapted to functions which
are zero at the end points x=0 and x=L of the interval [0, L], since all the basis
functions sin

(
nπx
L

)
have this property.

Therefore, by Adomian decomposition method, we can write,

u(x, t) = u(x, 0) + L−1
t (K0D

(1−γ)
t (Lxxu(x, t))) (8)

where

u0 = u(x, 0)

=

∞∑
n=1

2

L

∫ L

0

f(ξ) sin

(
nπξ

L

)
dξ sin

(nπx
L

)

u1 = L−1
t (K0D

(1−γ)
t (Lxxu0))

u2 = L−1
t (K0D

(1−γ)
t (Lxxu1))

u3 = L−1
t (K0D

(1−γ)
t (Lxxu2))

and so on.
The decomposition series (4) solution is generally converges very rapidly in real
physical problems [14]. The rapidity of this convergence means that few terms
are required. Convergence of this method has been rigorously established by
Cherruault [38], Abbaoui and Cherruault [39, 40] and Himoun, Abbaoui and
Cherruault [41]. The practical solution will be the n-term approximation φn
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φn =

n−1∑

i=0

ui(x, t) , n ≥ 1 (9)

with

lim
n→∞

φn = u(x, t)

(1) Implementation of the present method

Example 1. Let us consider initial conditions:

u(x, 0) = x(1− x), 0 < x < 1 (10)

and boundary conditions:

u(0, t) = u(1, t) = 0, t ≥ 0 (11)

for the eq.(1), as taken in[8, 9]. Physical u(x, t) represents the temperature at
any point x at any time t in a solid bounded by the planes x = 0 and x = 1.
The Dirichlet’s boundary conditions u(0, t) = u(1, t) = 0 express the fact that
the ends x = 0 and x = 1 are kept at temperature zero. The initial distribution
of temperature in the solid is described by the equation u(x, 0) = x(1 − x),
0 < x < 1.
We extend the domain of definition of f(x) to (-1, 0) defining by f(x) = −f(−x).
Then f(x) becomes odd function in the interval (-1, 1). The Fourier sine series
of f(x) in [0, 1] can be obtained as

f(x) =

∞∑
n=1

4(1− cos(nπ))

n3π3
sin(nπx) (12)

Therefore, after considering f(x) as Fourier sine series, we can take

u(x, 0) =

∞∑
n=1

4(1− cos(nπ))

n3π3
sin(nπx) (13)

because of the fact that Fourier sine series is well adapted to functions which
are zero at the end points x=0 and x=1 of the interval [0, 1], since all the basis
functions sin(nπx) have this property.
We will then obtain from recursive scheme for Adomian decomposition method

u0 = u(x, 0)

=

∞∑
n=1

4(1− cos(nπ))

n3π3
sin(nπx)

u1 = L−1
t (K0D

(1−γ)
t (Lxxu0))
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=
−tγ

Γ(γ + 1)

∞∑
n=1

4(1− cos(nπ))

n3π3
Kn2π2 sin(nπx)

u2 = L−1
t (K0D

(1−γ)
t (Lxxu1))

=
t2γ

Γ(2γ + 1)

∞∑
n=1

4(1− cos(nπ))

n3π3
K2n4π4 sin(nπx)

u3 = L−1
t (K0D

(1−γ)
t (Lxxu2))

=
−t3γ

Γ(3γ + 1)

∞∑
n=1

4(1− cos(nπ))

n3π3
K3n6π6 sin(nπx)

u4 = L−1
t (K0D

(1−γ)
t (Lxxu3))

=
t4γ

Γ(4γ + 1)

∞∑
n=1

4(1− cos(nπ))

n3π3
K4n8π8 sin(nπx)

and so on.
Therefore, the solution is

u(x, t) =

∞∑
n=1

4(1− cos(nπ))

n3π3
sin(nπx)

∞∑

k=0

(−Kn2π2tγ)k

Γ(kγ + 1)

=

∞∑
n=1

4(1− (−1)n)

n3π3
sin(nπx)Eγ(−Kn2π2tγ)

=
8

π3

∞∑
n=0

sin[(2n+ 1)πx]Eγ [−K(2n+ 1)2π2tγ ]

(2n+ 1)3
(14)

where Eλ (z) is the Mittag-Leffler function in one parameter.
The solution (14) can be verified through substitution in eq. (1).
Example 2. Let us consider the problem of anomalous subdiffusion of particle
in a finite medium with initial condition:

u(x, 0) = f(x) = δ(x− L/2), (15)

and absorbing boundary conditions:

u(0, t) = u(L, t) = 0, t ≥ 0 (16)

for the eq.(1), as taken in [10].
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We extend the domain of definition of f(x) to (-L, 0) defining by f(x) = −f(−x).
Then f(x) becomes odd function in the interval (-L, L). The Fourier sine series
of f(x) in [0, L] can be obtained as

f(x) =
2

L

∞∑
n=0

(−1)n sin
(2n+ 1)πx

L
(17)

Therefore, after considering f(x) as Fourier sine series, we can take

u(x, 0) =
2

L

∞∑
n=0

(−1)n sin
(2n+ 1)πx

L
(18)

because of the fact that Fourier sine series is well adapted to functions which
are zero at the end points x=0 and x=L of the interval [0, L], since all the basis

functions sin (2n+1)πx
L have this property.

We will then obtain from recursive scheme for Adomian decomposition method

u0 = u(x, 0)

=
2

L

∞∑
n=0

(−1)n sin
(2n+ 1)πx

L

u1 = L−1
t (K0D

(1−γ)
t (Lxxu0))

=
2

L

∞∑
n=0

(−1)n sin
(2n+ 1)πx

L

{
(2n+ 1)π

L

}2 { −Ktγ

Γ(γ + 1)

}

u2 = L−1
t (K0D

(1−γ)
t (Lxxu1))

=
2

L

∞∑
n=0

(−1)n sin
(2n+ 1)πx

L

{
(2n+ 1)π

L

}4 {
K2t2γ

Γ(2γ + 1)

}

and so on.
Therefore, the solution is

u(x, t) =
2

L

∞∑
n=0

(−1)n sin
(2n+ 1)πx

L

∞∑
r=0

{
−K

{
(2n+1)π

L

}2

tγ
}r

Γ(rγ + 1)

=
2

L

∞∑
n=0

(−1)n sin
(2n+ 1)πx

L
Eγ(−K

(2n+ 1)2π2

L2
tγ) (19)

where Eλ (z) is the Mittag-Leffler function in one parameter.

3. Alternative approach
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We can obtain the same solutions (14) and (19) in another way. First we
take finite fourier sine transform of eq. (1), integrating the second term of the
resulting equation by parts, and then applying the boundary conditions, we
obtain

du(n, t)

dt
+

n2π2

L2
K0D

1−γ
t u(n, t) = 0 (20)

where n is a wave number, and

u(n, t) =

∫ L

0

u(x, t) sin
(nπx

L

)
dx (21)

is the finite sine transform of u(x, t).
Taking finite sine transform of eq. (2), we obtain

u(n, 0) =

∫ L

0

f(x) sin
(nπx

L

)
dx (22)

Let us rewrite the eq. (20) in an operator form

Ltu = −n2π2

L2
K0D

1−γ
t u(n, t) (23)

where Lt ≡ d
dt which is an easily invertible linear operator, 0D

1−γ
t (•) is the

Riemann-Liouville derivative of order (1 − γ). Applying the inverse operator
L−1
t to the eq. (23) yields

u(n, t) = u(n, 0)− n2π2

L2
K0D

1−γ
t u(n, t)

The Adomian decomposition method [13, 14] assumes an infinite series solution
for unknown function u(n, t) in the form

u(n, t) =

∞∑

k=0

uk(n, t), (24)

Therefore, by Adomian decomposition method, we can write,

u0 = u(n, 0)

=

∫ L

0

f(x) sin (nπx) dx

u1 = −n2π2

L2
K0D

1−γ
t (u0)

u2 = −n2π2

L2
K0D

1−γ
t (u1)
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u3 = −n2π2

L2
K0D

1−γ
t (u2)

and so on.
Therefore, the entire components u0, u1, u2, . . . . are identified and the series
solution thus entirely determined. In this case the exact solution in a closed
form may be obtained. The practical solution will be the n-term approximation
φn

φn =

n−1∑

i=0

ui(n, t) , n ≥ 1 (25)

with

lim
n→∞

φn = u(n, t)

(1) Alternative approach for 1st Example

let us consider the initial condition (10) and boundary conditions (11) for
eq. (1). Then from recursive relations of Adomian decomposition method with
initial conditions eq. (22) gives

u0 = u(n, 0)

=

∫ 1

0

f(x) sin(nπx)dx

=
2(1− cos(nπ))

n3π3

u1 = −n2π2L−1
t (K0D

1−γ
t (u0))

= 2(1−cos(nπ))
n3π3

[
−Kn2π2 tγ

Γ(γ+1)

]

u2 = −n2π2L−1
t (K0D

1−γ
t (u1))

= 2(1−cos(nπ))
n3π3

[
K2n4π4 t2γ

Γ(2γ+1)

]

u3 = −n2π2L−1
t (K0D

1−γ
t (u2))

= 2(1−cos(nπ))
n3π3

[
−K3n6π6 t3γ

Γ(3γ+1)

]

u4 = −n2π2

4 L−1
t (0D

1−γ
t (u3))

= 2(1−cos(nπ))
n3π3

[
K4n8π8 t4γ

Γ(4γ+1)

]

and so on.
Therefore, the series u(n, t) becomes



A NEW APPLICATION OF ADOMIAN DECOMPOSITION METHOD 1165

u(n, t) =
2(1− cos(nπ))

n3π3

∞∑

k=0

(−Kn2π2tγ
)k

Γ (kγ + 1)
(26)

=
2(1− cos(nπ))

n3π3
Eγ(−Kn2π2tγ)

Taking the inverse finite sine transform of eq. (??) we obtain the solution

u(x, t) =
4

π3

∞∑
n=1

(1− cos(nπ))

n3
Eγ(−Kn2π2tγ) sin (nπx)

=

∞∑
n=1

4(1− (−1)n)

n3π3
sin(nπx)Eγ(−Kn2π2tγ)

=
8

π3

∞∑
n=0

sin[(2n+ 1)πx]Eγ [−K(2n+ 1)2π2tγ ]

(2n+ 1)3
(27)

where Eλ (z) is the Mittag-Leffler function in one parameter.
The solution (27) can be verified through substitution in eq. (1). The two
solutions (14) and (27) are same.

(1) (a) Alternative approach for 2nd Example

We can obtain the same solution (19) in another way. Let us consider the
initial condition (15) and boundary conditions (16) for eq. (1). Then from
recursive relations of Adomian decomposition method with initial conditions eq.
(22) gives

u0 = u(n, 0)

=

∫ 1

0

δ(x− L/2) sin
(nπx

L

)
dx

= sin
(nπ

2

)

u1 = −Kn2π2

L2 L−1
t (0D

1−γ
t (u0))

= −Kn2π2

L2
tγ

Γ(γ+1) sin
(
nπ
2

)

u2 = −Kn2π2

L2 L−1
t (0D

1−γ
t (u1))

= K2n4π4

L4
t2γ

Γ(2γ+1) sin
(
nπ
2

)

and so on.
Therefore, the series u(n, t) becomes
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u(n, t) =

∞∑
r=0

{
−Kn2π2

L2 tγ
}r

sin
(
nπ
2

)

Γ(rγ + 1)
(28)

=
2

L

∞∑
n=1

Eγ(−K
n2π2

L2
tγ) sin

nπ

2
sin

nπx

L

=
2

L

∞∑
n=0

(−1)n sin
(2n+ 1)πx

L
Eγ(−K

(2n+ 1)2π2

L2
tγ)

Taking the inverse finite sine transform of eq. (??) we obtain the solution

u(x, t) =
4

π3

∞∑
n=1

(1− cos(nπ))

n3
Eγ(−Kn2π2tγ) sin (nπx)

=

∞∑
n=1

4(1− (−1)n)

n3π3
sin(nπx)Eγ(−Kn2π2tγ)

=
8

π3

∞∑
n=0

sin[(2n+ 1)πx]Eγ [−K(2n+ 1)2π2tγ ]

(2n+ 1)3
(29)

where Eλ (z) is the Mittag-Leffler function in one parameter.
5. Numerical Results and Discussions.
Fig. 1 presenting the decomposition method solution at t=0.25 for γ = 0.5.
Fig. 2 presenting the decomposition method solution at t=0.5 for γ = 0.75.
Fig. 3 presenting the decomposition method solution at t=0.5 for γ = 1.
Fig. 4 presenting the decomposition method solution at t=0.005, 0.05 and 0.5
for γ = 0.75.
In the present numerical analysis we assume K = 1 for the eq. (1). Equation
(14) has been used to draw the figures. Figures 1 and 2 cited fast diffusion
behaviour. Figure 3 shows very slow diffusion behaviour. Figure 4 shows fast
diffusion when t is small and exhibits slow diffusion as t increases. Figures 1-4
have been drawn using the Mathematica software [42].

4. Conclusion

This paper presents an analytical scheme to obtain the solution of a fractional
Fokker-Planck equation. In the present analysis, Admian decomposition method
has been successfully applied in two different new ways. In both approaches same
result has been achieved. Physical significance of the solution has been graphi-
cally presented in this paper. In our previous papers [32-37] we have already as
well as successfully exhibit the applicability of Adomian decomposition method
to obtain a solution for dynamic system containing factional derivative. In this
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work we demonstrate that this method is also well suited to solve fractional
Fokker-Planck equation. The decomposition method is straightforward, without
restrictive assumptions and the components of the series solution can be easily
computed using any mathematical symbolic package. Moreover, this method
does not change the problem into a convenient one for the use of linear theory.
It, therefore, provides more realistic series solutions that generally converge very
rapidly in real physical problems. When solutions are computed numerically, the
rapid convergence is obvious. Moreover, no linearization or perturbation is re-
quired. It can avoid the difficulty of finding the inverse of Laplace Transform
and can reduce the labour of perturbation method. Furthermore, as the de-
composition method does not require discretization of the variables, i. e., time
and space, it is not affected by computational round off errors and one is not
faced with necessity of large computer memory and time. Consequently, the
computational size will be reduced.
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