NECESSARY CONDITION AND SUFFICIENT CONDITION FOR THE WAVELET FRAMES IN $L^2(R^n)$

  • Wu, Guochang (Department of Mathematics and Information Science, Henan University of Finance and Economics) ;
  • Zhang, Rui (Department of Mathematics and Information Science, Henan University of Finance and Economics)
  • Received : 2009.10.31
  • Accepted : 2010.05.26
  • Published : 2010.09.30

Abstract

The main goal for this paper is consider the necessary conditions and sufficient conditions of wavelet frames in higher dimensions with an arbitrary expanding matrix dilation. At first, we give a necessary condition of wavelet frame in $L^2(R^n)$, which generalizes the univariate results of Shi from one dimension with an arbitrary real number a(a > 1) dilation to higher dimension with an arbitrary expansive matrix dilation. Secondly, we deduce a necessary condition for wavelet frames in $L^2(R^n)$ when the function $\psi$ satisfies some property of the decay. For the case n = 1, we obtain a corollary which has weaker condition comparing with existing result.

Keywords

References

  1. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
  2. I. Daubechies, A. Groddmann and Y. Mayer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283. https://doi.org/10.1063/1.527388
  3. P. G. Casazza and J. Kovaevic, Equal-norm tight frames with erasures, Adv. Comput. Math. 18 (2003), 387-430. https://doi.org/10.1023/A:1021349819855
  4. V. K. Goyal, J. Kovaevic and J. A. Kelner, Quantized frames expansions with erasures, Appl. Comput. Harmon. Anal. 10 (2001), 203-233. https://doi.org/10.1006/acha.2000.0340
  5. B. Hassibi, B. Hochwald, A. Shokrollahi and W. Sweldens, Representation theory for highrate multiple-antenna code design, IEEE Trans. Inform. Theory 47 (2001), 2335-2367. https://doi.org/10.1109/18.945251
  6. I. Daubechies, Ten Lectures on Wavelets, in: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, SIAM, Philadelphia, 1992.
  7. R. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.
  8. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), 961-1005. https://doi.org/10.1109/18.57199
  9. C. K. Chui and X. L. Shi, Inequalities of Littlewood-Paley type for frames and wavelets, SIAM J. Math. Anal. 24 (1993), 263-277. https://doi.org/10.1137/0524017
  10. P. G. Casazza and O. Christensen, Weyl-Heisenberg frames for subspaces of $L^2$(R), Proc. Amer. Math. Soc. 129 (2001), 145-154. https://doi.org/10.1090/S0002-9939-00-05731-2
  11. X. L. Shi and Q. L. Shi, A new criterion of affine frame, Chin. Ann. of Math.(Series A) 26 (2005): 257-262.
  12. X. L Shi. and F. Chen, Necessary conditions and sucient conditions of affine frame, Science in China (Series A) 48 (2005), 1369-1378. https://doi.org/10.1360/04ys0143
  13. D. F. Li and X. L. Shi, A sufficient condition for affine frames with matrix dilation, Analysis in Theory and Applications 25 (2009), 66-174.
  14. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2002.