A DELAYED SIR EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE AND PULSE VACCINATION

  • Du, Yanke (Institute of Applied Mathematics, Shijiazhuang Mechanical Engineering College) ;
  • Xu, Rui (Institute of Applied Mathematics, Shijiazhuang Mechanical Engineering College)
  • Received : 2009.10.12
  • Accepted : 2010.01.16
  • Published : 2010.09.30

Abstract

An SIR epidemic model with pulse vaccination and time delay describing infection period is investigated. The global attractiveness of the infection-free periodic solution is discussed, and sufficient condition is obtained for the permanence of the system. Our results indicate that a large vaccination rate or a short period of pulsing leads to the eradication of the disease.

Keywords

References

  1. Z. Agur, L. Cojocaru and G. Mazor, et al., Pulse mass measels vaccination across age cohorts, proc. Nat. Acad. Sci. USA 90 (1993) 698-702.
  2. V. Capasso and G. Serio, A generalization of Kermack-Mackendrick deterministic epidemic model, Math. Biosci. 42 (1978) 43-61. https://doi.org/10.1016/0025-5564(78)90006-8
  3. A. D'Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Appl. Math. Comput. 151 (2004) 181-187. https://doi.org/10.1016/S0096-3003(03)00331-X
  4. A. D'Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model, Math. Biosci. 179 (2002) 57-72. https://doi.org/10.1016/S0025-5564(02)00095-0
  5. S. Gao, L. Chen and Z. Teng, Pulse vaccination of an SEIR epidemic model with time delay, Nonlinear Anal. RWA 9 (2008) 599-607. https://doi.org/10.1016/j.nonrwa.2006.12.004
  6. S. Gao, Z. Teng and D Xie, Analysis of a delayed SIR epidemic model with pulse vaccination, Chaos, Solitons, Fractals, 40 (2009), 1004-1011. https://doi.org/10.1016/j.chaos.2007.08.056
  7. H. Hethcote and P. Van Den Driessche, Two SIS epidemiological models for infectious disease. J. Math. Biol. 40 (2000) 2-26. https://doi.org/10.1007/s002850050002
  8. M. Kermark and A. Mckendrick, Contributions to the mathematical theory of epidemic model, Proc. Roy. Soc. A. 115 (1927) 700-721. https://doi.org/10.1098/rspa.1927.0118
  9. Z. Lu, X. Chi and L. Chen, The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission, Math. Comput. Modell. 36 (2002) 1039-1057. https://doi.org/10.1016/S0895-7177(02)00257-1
  10. L. Stone, B. Shulgin and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Modell. 31 (2000) 207-215. https://doi.org/10.1016/S0895-7177(00)00040-6
  11. G. Zeng and L. Chen, Complexity and asympotical behavior of an SIRS epidemic model with proportional impulse vaccination, Adv. Complex Syst. 8 (2005) 419-431. https://doi.org/10.1142/S0219525905000580