References
- Z. Agur, L. Cojocaru and G. Mazor, et al., Pulse mass measels vaccination across age cohorts, proc. Nat. Acad. Sci. USA 90 (1993) 698-702.
- V. Capasso and G. Serio, A generalization of Kermack-Mackendrick deterministic epidemic model, Math. Biosci. 42 (1978) 43-61. https://doi.org/10.1016/0025-5564(78)90006-8
- A. D'Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Appl. Math. Comput. 151 (2004) 181-187. https://doi.org/10.1016/S0096-3003(03)00331-X
- A. D'Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model, Math. Biosci. 179 (2002) 57-72. https://doi.org/10.1016/S0025-5564(02)00095-0
- S. Gao, L. Chen and Z. Teng, Pulse vaccination of an SEIR epidemic model with time delay, Nonlinear Anal. RWA 9 (2008) 599-607. https://doi.org/10.1016/j.nonrwa.2006.12.004
- S. Gao, Z. Teng and D Xie, Analysis of a delayed SIR epidemic model with pulse vaccination, Chaos, Solitons, Fractals, 40 (2009), 1004-1011. https://doi.org/10.1016/j.chaos.2007.08.056
- H. Hethcote and P. Van Den Driessche, Two SIS epidemiological models for infectious disease. J. Math. Biol. 40 (2000) 2-26. https://doi.org/10.1007/s002850050002
- M. Kermark and A. Mckendrick, Contributions to the mathematical theory of epidemic model, Proc. Roy. Soc. A. 115 (1927) 700-721. https://doi.org/10.1098/rspa.1927.0118
- Z. Lu, X. Chi and L. Chen, The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission, Math. Comput. Modell. 36 (2002) 1039-1057. https://doi.org/10.1016/S0895-7177(02)00257-1
- L. Stone, B. Shulgin and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Modell. 31 (2000) 207-215. https://doi.org/10.1016/S0895-7177(00)00040-6
- G. Zeng and L. Chen, Complexity and asympotical behavior of an SIRS epidemic model with proportional impulse vaccination, Adv. Complex Syst. 8 (2005) 419-431. https://doi.org/10.1142/S0219525905000580