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DISEASE TRANSMISSION MSEIR MODEL WITH

INDIVIDUALS TRAVELING BETWEEN PATCHES i AND i+ 1

S. SEDDIGHI CHAHARBORJ∗, M. R. ABU BAKAR AND A. EBADIAN

Abstract. In this article we want to formulate a disease transmission
model, MSEIR model, for a population with individuals travelling between
patches i and i + 1 and we derive an explicit formula for the basic repro-
ductive number, R0, employing the spectral radius of the next generation
operator. Also, in this article we show that a system of ordinary differen-
tial equations for this model has a unique disease-free equilibrium and it is
locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
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1. Introduction

Mathematical modelling is an important device to analyze and control the
speed of infectious diseases increase in a society. In these models there are pa-
rameters and other variables of the problem. Mathematical models have impor-
tant tools in analyzing the spread and control of infectious diseases. The model
formulation process clarifies assumptions, variables, and parameters; moreover,
models provide conceptual results such as thresholds, basic reproduction num-
bers, contact numbers, and replacement numbers.

Mathematical models and computer simulations are useful experimental tools
for building and testing theories, assessing quantitative conjectures, answering
specific questions, determining sensitivities to changes in parameter values, and
estimating key parameters from data. Understanding the transmission charac-
teristics of infectious diseases in communities, regions, and countries can lead to
better approaches to decrease the transmission of these diseases.
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Mathematical models are used in comparing, planning, implementing, eval-
uating, and optimizing various detection, prevention, therapy, and control pro-
grams. Epidemiology modelling can contribute to the design and analysis of
epidemiological surveys, suggest crucial data that should be collected, identify
trends, make general forecasts, and estimate the uncertainty in forecasts [3, 4].
Compartments with labels such as M, S, E, I, and R are often used for the
epidemiological classes as shown in figure 1. The class M contains these infants
with passive immunity. After the maternal antibodies disappear from the passive
immunity body, the infant moves to the susceptible class S [6].

In figure 1 we see a MSEIR epidemiological model. In this model A is new
born,s with passive immunity that enterM class, B is new born,s without passive
immunity that enter S class, αM is the transfer out of the passively immune
class, εE is the transfer out of the exposed class, γI is the recovery rate from
the infectious class, d is the natural death rate and a is the rate of death due to
the disease, r is the average number of contacts per unit of time per individual,
β is the probability of transmitting the infection per contact. Therefore, 1/ε is
the mean latent period and 1/γ is the mean infectious period [6].

M S E I R

B

A αM λS εE γI

aI
dM dS dE dI dR

Figure 1.

The population dynamics for this model is given by the following system of
ordinary differential equations,

dM

dt
= A− (α+ d)M,

dS

dt
= B + αM − (d+ λ)S,

dE

dt
= λS − (ε+ d)E,

dI

dt
= εE − (d+ a+ γ)I,

dR

dt
= γI − dR,

with λ(t) = rβ I(t)
N(t) . Where N(t) = M(t) +S(t) +E(t) + I(t) +R(t) is the total

population number at time t. The basic reproductive for the MSEIR model is
[6],

R0 =
rβε

(d+ a+ γ)(ε+ d)
(1)
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2. MSEIR Model with n Patches

In figure 2 we consider an MSEIR epidemic model for transmission of a com-
municable disease with population travel between n patches. The number of
immunity, susceptible, exposed, infectious and recovered individuals in patch i
at time t, is denoted by Mi(t), Si(t), Ei(t), Ii(t) and Ri(t), respectively. We as-
sume there is population travel between patches i and i+1 with different travel
rates for each compartment.
The population dynamics for this MSEIR model is given by the following sys-
tem of 5n ordinary differential equations with i = 1, 2, ..., n.

dM1

dt
= A1 +m2,1M2 − (m1,2 + α1 + d1)M1, (2)

dMi

dt
= Ai +mi+1,iMi+1 +mi−1,iMi−1 − (mi,i+1 +

mi,i−1 + αi + di)Mi; 2 ≤ i ≤ n− 1, (3)

dMn

dt
= An +mn−1,nMn−1 − (mn,n−1 + αn + dn)Mn, (4)

dS1

dt
= B1 + α1M1 + p2,1S2 − (p1,2 + d1 + λ1)S1, (5)

dSi

dt
= Bi + αiMi + pi−1,iSi−1 + pi+1,iSi+1 − (pi,i+1 +

pi,i−1 + di + λi)Si; 2 ≤ i ≤ n− 1, (6)

dSn

dt
= Bn + αnMn + pn−1,nSn−1 − (pn,n−1 + dn + λn)Sn, (7)

dE1

dt
= λ1S1 + e2,1E2 − (e1,2 + ε1 + d1)E1, (8)

dEi

dt
= λiSi + ei+1,iEi+1 + ei−1,iEi−1 − (ei,i−1 +

ei,i+1 + εi + di)Ei; 2 ≤ i ≤ n− 1, (9)

dEn

dt
= λnSn + en−1,nEn−1 − (en,n−1 + εn + dn)En, (10)

dI1
dt

= ε1E1 + q2,1I2 − (q1,2 + a1 + d1 + γ1)I1, (11)

dIi
dt

= εiEi + qi+1,iIi+1 + qi−1,iIi−1 − (qi,i−1 + qi,i+1

ai + di + γi)Ii; 2 ≤ i ≤ n− 1, (12)

dIn
dt

= εnEn + qn−1,nIn−1 − (qn,n−1 + an + dn + γn)In, (13)

dR1

dt
= γ1I1 + r2,1R2 − (r1,2 + d1)R1, (14)
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dRi

dt
= γiIi + ri+1,iRi+1 + ri−1,iRi−1 − (ri,i+1 + ri,i−1 +

di)Ri; 2 ≤ i ≤ n− 1, (15)

dRn

dt
= γnIn + rn−1,nRn−1 − (rn,n−1 + dn)Rn, (16)

with

λi(t) = rβi
Ii(t)

Ni(t)
.

Here
Ni(t) = Mi(t) + Si(t) + Ei(t) + Ii(t) +Ri(t)

is the total population number in patch i at time t, Ai is the number of individ-
uals born with passive immunity per unit time, Bi is the number of individuals
born without passive immunity per unit time, di is the natural death rate, ai is
the rate of death due to the disease in patch i, αi is the rate of loss of passive
immunity, εi is the rate that exposed individuals become infectious and γi is the
recovery rate. Thus 1/di is the average lifetime and 1/εi is the average exposed
period. The rate at immunity, susceptible, exposed, infectious and recovered
individuals travel from patch i to patch i+1 is denoted by mi,i+1, pi,i+1, ei,i+1,
qi,i+1 and ri,i+1, respectively and from patch i + 1 to i is denoted by mi+,i,
pi+1,i, ei+1,i, qi+1,i and ri+1,i, respectively. It is assumed that all parameters
are positive constants except that ai can be zero. The total population size in

all patches is N(t) =
n∑

i=1

Ni(t).
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Figure 2.
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Theorem 1. System (2)-(16) has a unique disease-free equilibrium.
Proof. In disease-free equilibrium of system (2)-(16) all infected variables set
zero, namely Ei = Ii = 0 for i = 1, 2, ..., n. Setting Ei = Ii = 0 for i = 1, 2, ..., n
at dRi

dt = 0, for i = 1, 2, ..., n gives,

−KR = 0,

with

K =




r1,2 + d1 −r2,1 0 0 · · · 0
−r1,2 f2 −r3,2 0 · · · 0
0 −r2,3 f3 −r4,3 · · · 0

0
. . .

. . .
. . . · · · 0

...
... −rn−2,n−1 fn−1 −rn,n−1 0

0 0 0 · · · −rn−1,n rn,n−1 + dn




and

R = [R1, R2, ..., Rn]
T

where fi = ri,i+1 + ri,i−1 + di ; 2 ≤ i ≤ n − 1. Since matrix K is irreducible
[1] and so, K has a positive inverse [1], thus it can be seen that Ri = 0 for
i = 1, 2, ..., n. A disease-free equilibrium for model (2)-(16) is thus given by,

Mi = M0
i , Si = S0

i , Ei = Ii = Ri = 0fori = 1, 2, ..., n.

At equilibrium dMi

dt = 0, dSi

dt = 0 and from (2)-(4), (5)-(7),

M0 = [M0
1 ,M

0
2 , ...,M

0
n]

T and S0 = [S0
1 , S

0
2 , ..., S

0
n]

T ,

satisfies the linear systems C1M
0 = A with A = [A1, A2, ..., An]

T and C2S
0 = B

with B = [B1 + α1M1, B2 + α2M2, ..., Bn + αnMn]
T and

C1 =




m1,2 + α1 + d1 −m2,1 0 0 · · · 0
−m1,2 b2 −m3,2 0 · · · 0

0 −m2,3 b3 −m4,3 · · · 0

0
. . .

. . .
. . . · · · 0

...
... −mn−2,n−1 bn−1 −mn,n−1 0

0 0 0 · · · −mn−1,n mn,n−1 + dn




and

C2 =




p1,2 + d1 −m2,1 0 0 · · · 0
−p1,2 θ2 −p3,2 0 · · · 0
0 −p2,3 θ3 −p4,3 · · · 0

0
. . .

. . .
. . . · · · 0

...
... −pn−2,n−1 θn−1 −pn,n−1 0

0 0 0 · · · −pn−1,n pn,n−1 + dn



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with bi = mi,i+1 + mi,i−1 + di ; 2 ≤ i ≤ n − 1 and θi = pi,i+1 + pi,i−1 + di ;
2 ≤ i ≤ n−1. Since matrix C1 and C2 are irreducible [1] and so, C1 and C2 have
positive inverses [1]. Thus there are unique solutions, given by M0 = C−1

1 A and
S0 = C−1

2 B. This gives the unique disease-free equilibrium.

Theorem 2. Let R0 be the basic reproductive number for system (2)-(16), then
the disease-free equilibrium of system (2)-(16) is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.
Proof. We order variables as,

E1, ..., En, I1, ..., In,M1,...,Mn, S1, ..., Sn, R1, ..., Rn,

and we take the vector of infected variables as, v = (E1, ..., En, I1, ..., In). The
disease-free equilibrium, E0, is locally asymptotically stable if all eigenvalues of
the Jacobian matrix of system (2)-(16) at E0, namely,

J =

[
F − V 0
J2,1 J2,2

]

have negative real parts, and unstable if J has at least one eigenvalue with positive
real part. The eigenvalue of J are the eigenvalues of F − V and those of J2,2.
To determine F and V we consider W and U , where,

W = [rβ1
S1I1
N1

, rβ2
S2I2
N2

, ..., rβn
SnIn
Nn

, 0, ..., 0]T

and

U =




−e2,1E2 + (e1,2 + ε1 + d1)E1

−e3,2E3 +K2E2 − e1,2E1

...
−en,n−1En +Kn−1En−1 − en−2,n−1En−2

(en,n−1 + εn + dn)En − en−1,nEn−1

−ε1E1 − q2,1I2 + (q1,2 + a1 + d1 + γ1)I1
−ε2E2 − q3,2I3 +Q2I2 − q1,2I1

...
−εn−1En−1 − qn,n−1In +Qn−1In−1 − qn−2,n−1In−2

−εnEn − qn−1,nIn−1 + (qn,n−1 + an + dn + γn)In




(17)

where Ki = ei,i−1+ei,i+1 + εi + di(2 ≤ i ≤ n− 1), and Qi = qi,i−1 + qi,i+1 + ai +
di + γi(2 ≤ i ≤ n− 1). In the disease-free equilibrium linearizing W − U , gives
the F − V where F = [∂Wi

∂vi
] and V = [∂Ui

∂vi
]. Therefore, matrices F and V are

as follows,

F =

[
0 F1,2

0 0

]
and V =

[
V1,1 0
V2,1 V2,2

]
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where F1,2 = diag(rβ1, rβ2, ..., rβn),

V1,1 =




k1 −e2,1 0 0 · · · 0
−e1,2 k2 −e3,2 0 · · · 0
0 −e2,3 k3 −e4,3 · · · 0
...

...
. . .

. . .
. . . 0

0 0 0 −en−2,n−1 kn−1 −en,n−1

0 0 0 0 −en−1,n kn

,




(18)

V2,2 =




l1 −q2,1 0 0 · · · 0
−q1,2 l2 −q3,2 0 · · · 0
0 −q2,3 l3 −q4,3 · · · 0
...

...
. . .

. . .
. . . 0

0 0 0 −qn−2,n−1 ln−1 −qn,n−1

0 0 0 0 −qn−1,n ln




(19)

and

V2,1 = diag(ε1,ε2, ..., εn)

with

k1 = e1,2 + ε1 + d1,

ki = ei,i+1 + ei,i−1 + εi + di ; 2 ≤ i ≤ n− 1,

kn = en,n−1 + εn + dn,

l1 = q1,2 + a1 + d1 + γ1,

li = qi,i+1 + qi,i−1 + ai + di + γi; 2 ≤ i ≤ n− 1,

ln = qn,n−1 + an + dn + γn.

Matrices V1,1 and V2,2 are non-singular M-matrices [1], therefore, have positive
inverses. In matrix

J2,2 =

[ −C1 L
0 −C2

]
(20)

matrices C1 and C2 are non-singular M-matrices [1]. Thus J2,2 has all eigenval-
ues with negative real parts. Consequently the local stability of the disease-free
equilibrium depends only on eigenvalues of F −V . All eigenvalues of F −V have
negative real parts if only if s(F − V ) < 0 if only if ρ(FV −1) < 1 [11]. Since V
has a positive inverse, then FV −1 is a non-negative matrix. Now, we have,

FV −1 =

[
0 F1,2

0 0

] [
V −1
1,1 0

Y V −1
2,2

]
=

[
F1,2Y F1,2V

−1
2,2

0 0

]
(21)

where Y = V −1
2,2 diag(ε1, ε2, ..., εn)V

−1
1,1 . For find the basic reproductive number

we use the formula in [11], it follows that,

R0 = ρ(FV −1) = ρ(diag(rβ1, rβ2, ..., rβn)V
−1
2,2 diag(ε1, ε2, ..., εn)V

−1
1,1 ). (22)
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If R0 < 1 then s(F − V ) < 0, therefore all the eigenvalues lie in the left half
plane, so system (2)-(16) is locally asymptotically stable. Similarly if R0 > 1
then s(F − V ) > 0, thus at least one eigenvalue lies in the right half plane, so
system (2)-(16) is unstable.

Theorem 3. If we do not have any travel between patches, then the basic re-
productive number in patch i given by,

R
(i)
0 =

rβiεi
(εi + di)(ai + di + γi)

. (23)

Proof. If we dont have travel between patches, then we have,

dMi

dt
= Ai + (αi + di)Mi, (24)

dSi

dt
= Bi + αiMi − diSi + λiSi, (25)

dEi

dt
= λiSi − (εi + di)Ei; 1 ≤ i ≤ n (26)

dIi
dt

= εiEi − (ai + di + γi)Ii, (27)

dRi

dt
= γiIi − diRi. (28)

Linearizing system (24)-(28) around disease-free equilibrium gives the Jacobian
matrix J0 as,

J0 =

[
J0
1,1 J0

1,2

0 Fi − Vi

]
(29)

where

J0
1,1 =

[
αi + di 0

αi −di

]
, J0

1,2 =

[
0 0
0 −rβi

]
, (30)

Fi =

[
0 rβi

εi 0

]
, Vi =

[
εi + di 0

0 ai + di + γi

]
. (31)

The stability of the Jacobian matrix J0 at the disease-free equilibrium is com-
pletely by the stability of Fi − Vi. Since, Fi is a non-negative matrix and Vi is

a non-singular M-matrix [1], therefore the reproductive number, R
(i)
0 , is equal to

the spectral radius of the next generation operator FiV
−1
i [11],

R
(i)
0 = ρ(FiV

−1
i ) =

rβiεi
(εi + di)(ai + di + γi)

; 1 ≤ i ≤ n. (32)
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Theorem 4. Suppose in Theorem 3 we have Λ = Λi = ai + di + γi, εi = ε and
di = d for each i = 1, 2, ..., n,also. Then

min
i=1,...,n

R
(i)
0 ≤ R0 ≤ max

i=1,...,n
R

(i)
0 . (33)

Proof. Without loss of generality take β1 ≤ β2 ≤ ... ≤ βn, thus we have,

min
i=1,...,n

R
(i)
0 = R

(1)
0 =

rβ1ε

(ε+ d)Λ
≤ ... ≤ rβnε

(ε+ d)Λ
= R

(n)
0 = max

i=1,...,n
R

(i)
0 . (34)

Let V −1
1,1 = X = [xij ] and V −1

2,2 = D = [dij ]. From (22) we have,

R0 = ρ(diag(rβ1, rβ2, ..., rβn)Ddiag(ε1, ε2, ..., εn)X). (35)

If we take L = diag(rβ1, rβ2, ..., rβn)Ddiag(ε1, ε2, ..., εn)X, then we have,

L =




rβ1ε(d11x11 + ...+ d1nx1n) · · · rβ1ε(d11x1n + ...+ d1nxnn)
...

...
...

rβnε(dn1x11 + ...+ dnnxn1) · · · rβnε(dn1x1n + ...+ dnnxnn)


 . (36)

Let the sum of the entries in the first column of L denoted by [∆L]1 with
∆ = (1, 1, ..., 1)T . Then we have,

[∆L]1 = rβ1ε(d11x11 + ...+ d1nx1n) + (37)

... (38)

rβnε(dn1x11 + ...+ dnnxn1) (39)

≤ rβnε

n∑

i=1

xi1(d1i + ...+ dni) =
rβnε

Λ

n∑

i=1

xi1. (40)

The last equality follows from the fact that ∆V2,2 = Λ∆, thus ∆D = ( 1
Λ )∆. The

column sum of V1,1 is ε+ d, thus ∆X = ( 1
ε+d )∆. Therefore we have,

[∆L]1 ≤ rβnε

Λ(ε+ d)
= R

(n)
0 = max

i=1,...,n
R

(i)
0 . (41)

Similarly we have,

min
i=1,...,n

R
(i)
0 = R

(1)
0 =

rβ1ε

Λ(ε+ d)
≤ [∆L]1. (42)

For every column of L these inequalities are true. The spectral radius of a
nonnegative matrix lies between its minimum and maximum column sums [1],
thus we have,

min
i=1,...,n

R
(i)
0 ≤ R0 = ρ(diag(rβ1, rβ2, ..., rβn)Ddiag(ε1, ε2, ..., εn)X) ≤ R

(n)
0 = max

i=1,...,n
R

(i)
0 . (43)

Corollary 1. If in Theorem 4 we take βi = β, then we have,

R0 = R
(i)
0 ; 1 ≤ i ≤ n. (44)
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Theorem 5. Suppose ei,i−1 = qi,i−1 = 0 for each i = 2, ..., n. Then the basic
reproductive number, R0, for system (2)-(16) given by

R0 = max
i=1,...,n

{ rβnεn

(εn + dn)(an + dn + γn)
,

rβiεi

(ei,i+1 + εi + di)(qi,i+1 + ai + di + γi)
}. (45)

Proof. First we need to find V −1
1,1 and V −1

2,2 ,

V −1
1,1 =




1
k1

0 0 0 · · · 0

y2,1
1
k2

0 0 · · · 0

y3,1 y3,2
1
k3

0 · · · 0
...

...
. . .

. . .
. . . 0

yn−1,1 yn−1,2 yn−1,3 yn−1,4
1

kn−1
0

yn,1 yn,2 yn,3 · · · yn,n−1
1
kn




(46)

and

V −1
2,2 =




1
l1

0 0 0 · · · 0

z2,1
1
l2

0 0 · · · 0

z3,1 z3,2
1
l3

0 · · · 0
...

...
. . .

. . .
. . . 0

zn−1,1 zn−1,2 zn−1,3 zn−1,4
1

ln−1
0

zn,1 zn,2 zn,3 · · · zn,n−1
1
ln




(47)

with

yi,j = −
i−1∏
k=j

ek,k+1

i∏
k=j

kk

and zi,j = −
i−1∏
k=j

εk,k+1

i∏
k=j

lk

for 2 ≤ i ≤ n and 1 ≤ j ≤ i− 1.

Now, for find reproductive number we can use formula (22),

R0 = ρ(FV −1) = ρ(diag(rβ1, rβ2, ..., rβn)V
−1
2,2 diag(ε1, ε2, ..., εn)V

−1
1,1 ) = ρ(H) (48)

with

H =




rβ1ε1
l1k1

0 0 0 · · · 0

· rβ2ε2
l2k2

0 0 · · · 0

· · rβ3ε3
l3k3

0 · · · 0
...

...
. . .

. . .
. . . 0

· · · · · · rβn−1εn−1

ln−1kn−1
0

· · · · · · · rβnεn
lnkn




. (49)

Therefore, we have,

R0 = max
i=1,...,n

{ rβnεn

(εn + dn)(an + dn + γn)
,

rβiεi

(ei,i+1 + εi + di)(qi,i+1 + ai + di + γi)
}. (50)
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Corollary 2. If we Suppose ei,i−1 = qi,i−1 = 0 for each i = 2, ..., n. Then the

modified reproductive number,R̃
(i)
0 , for system (2)-(16) in patch i given by,

R̃
(i)
0 =

rβiεi
(ei,i+1 + εi + di)(qi,i+1 + ai + di + γi)

(i = 1, 2, ..., n− 1), (51)

R̃
(n)
0 = R

(n)
0 =

rβnεn
(εn + dn)(an + dn + γn)

. (52)

Corollary 3. Let in system (2)-(16), ei,i+1 = ei+,i = qi,i+1 = qi+,i = 0 for
i = 1, 2, ..., n then V1,1 = diag(ε1+d1, ..., εn+dn) and V2,2 = diag(k1, ..., kn). In
this case, the matrix

F1,2V
−1
2,2 diag(ε1, ..., εn)V

−1
1,1

is diagonal, therefore we have,

R0 = max
i=1,...,n

R
(i)
0 = max

i=1,...,n

rβiεi
ki(εi + di)

. (53)

Example 1. In Figure 3 to explain formula (22), we use the following model
parameters,
A1 = 300, A2 = 250, A3 = 150, A4 = 200, B1 = 500, B2 = 400, B3 = 200, B4 =
300,M1(0) = 800,M2(0) = 700,M3(0) = 600,M4(0) = 500, S1(0) = 2400,
S2(0) = 1200, S3(0) = 1500, S4(0) = 2000, I1(0) = 50, I2(0) = 40, I3(0) =
30, I4(0) = 20, E1(0) = E2(0) = E3(0) = E4(0) = R1(0) = R2(0) = R3(0) =
R4(0) = 0, r = 100, d1 = 0.005, d2 = 0.004, d3 = 0.003, d4 = 0.002, α1 =
0.04, α2 = 0.05, α3 = 0.02, α4 = 0.01, ε1 = 0.08, ε2 = 0.06, ε3 = 0.04, ε4 =
0.02, γ1 = 0.08, γ2 = 0.01, γ3 = 0.06, γ4 = 0.05, a1 = 0.6, a2 = 0.8, a3 = 0.7, a4 =
0.5,m1,2 = 0.03,m2,1 = 0.008,m2,3 = 0.02,m3,2 = 0.006,m3,4 = 0.01,m4,3 =
0.03, p1,2 = 0.02, p2,1 = 0.005, p2,3 = 0.01, p3,2 = 0.01, p3,4 = 0.03, p4,3 =
0.005, e1,2 = 0.01, e2,1 = 0.001, e2,3 = 0.02, e3,2 = 0.01, e3,4 = 0.03, e4,3 =
0.005, q1,2 = 0.04, q2,1 = 0.03, q2,3 = 0.02, q3,2 = 0.02, q3,4 = 0.04, q4,3 =
0.01, r1,2 = 0.04, r2,1 = 0.02, r2,3 = 0.02, r3,2 = 0.01, r3,4 = 0.03, r4,3 = 0.07.
and
β1 = 0.016, β2 = 0.02, β3 = 0.012, β4 = 0.02, for R0 > 1 and β1 = 0.007, β2 =
0.008, β3 = 0.009, β4 = 0.005, for R0 < 1.

Example 2. If in Example 1 we take,

e2,3 = e3,2 = e3,4 = e4,3 = q2,3 = q3,2 = q3,4 = q4,3 = 0,

then,

V1,1 =

[
V 1,1
1,1 0

0 V 2,2
1,1

]
and V2,2 =

[
V 1,1
2,2 0

0 V 1,1
2,2

]
(54)
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Time

I1

I2

I3

I4

(a) (b)

Time

I1

I2

I3

I4

Figure 3. (a): R0 = max 2.9594, 1.9604, 1.6291, 0.6609 = 2.9594 > 1
and (b): R0 = max 0.9154, 0.8196, 0.6419, 0.4256 = 0.9154 < 1.

with

V 1,1
1,1 =

[
k1 −e2,1

−e1,2 k2

]
, V 2,2

1,1 =

[
k3 0
0 k4

]
, (55)

V 1,1
2,2 =

[
l1 −q2,1

−q1,2 l2

]
, V 2,2

2,2 =

[
l3 0
0 l4

]
. (56)

Therefore,

R0 = ρ(diag(rβ1, rβ2, rβ3, rβ4)V
−1
2,2 diag(ε1, ε2,ε3, ε4)V

−1
1,1 ) (57)

= ρ(diag(rβ1, rβ2)(V
1,1
2,2 )

−1diag(ε1, ε2)(V
1,1
1,1 )

−1) (58)

ρ(diag(rβ3, rβ4)(V
2,2
2,2 )

−1diag(ε3, ε4)(V
2,2
1,1 )

−1) (59)

= max{R̃(1,2)
0 , R

(3,4)
0 } = max{R̃(1,2)

0 , R
(3)
0 , R

(4)
0 }, (60)

where,

R
(3)
0 =

rβ3ε3
k3l3

, R
(4)
0 =

rβ4ε4
k4l4

and R̃
(1,2)
0 = ρ(Q) (61)

with

Q =




(rβ1k2)(ε1l2)+(rβ1e2,1)(ε2q1,2)
(k1k2−e1,2e2,1)(l1l2−q1,2q2,1)

(rβ1k2)(ε1q2,1)+(rβ1e2,1)(ε2l1)
(k1k2−e1,2e2,1)(l1l2−q1,2q2,1)

(rβ2e1,2)(ε1l2)+(rβ2k1)(ε2q2,1)
(k1k2−e1,2e2,1)(l1l2−q1,2q2,1)

(rβ2e1,2)(ε1q2,1)+(rβ2k1)(ε2l1)
(k1k2−e1,2e2,1)(l1l2−q1,2q2,1)


 . (62)

Now, we use

β1 = 0.017, β2 = 0.018, β3 = 0.019, β4 = 0.005, for R0 > 1, R̃
(1,2)
0 > 1, R

(3)
0 >

1, R
(4)
0 < 1 and β1 = 0.007, β2 = 0.008, β3 = 0.007, β4 = 0.015, for R0 >

1, R̃
(1,2)
0 < 1, R

(3)
0 < 1, R

(4)
0 > 1 (Figure 4).
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I2

I3

I4

(a)

I1

I2

I3

I4

(a)

Time Time

I1

I2

I3

I4

(a)

I1

I2

I3

(a)

Time

I1

I2

I3

I4

(b)

Time

Figure 4. (a): R̃
(1,2)
0 = max{2.1656, 1.8015} = 2.1656 > 1, R

(3)
0 =

2.3164 > 1, R
(4)
0 = 0.8235 < 1, R0 = 2.3164 > 1 and (b): R̃

(1,2)
0 =

max{0.9324, 0.7657} = 0.9324 < 1, R
(3)
0 = 0.8534 < 1, R

(4)
0 = 2.4704 >

1, R0 = 2.4704 > 1.

Example 3. If in Example 2 we take, e2,1 = q2,1 = 0, then,

R0 = max
i=2,3,4

{R(1)
0 , R

(i)
0 } (63)

with

R
(1)
0 =

rβ1ε1
(e1,2 + ε1 + d1)(q1,2 + a1 + d1 + γ1)

, (64)

R
(i)
0 =

rβiεi
(εi + di)(ai + di + γi)

; i = 2, 3, 4. (65)

Now, we use, β1 = 0.007, β2 = 0.008, β3 = 0.017, β4 = 0.015, for R
(1)
0 ,R

(2)
0 <

1,R
(3)
0 ,R

(4)
0 > 1,R0 > 1 and β1 = 0.0082,β2 = 0.0082,β3 = 0.0081,β4 = 0.006 for

R
(1)
0 ,R

(2)
0 ,R

(3)
0 , R

(4)
0 ,R0 < 1 (Figure 5).

Example 4. If in Example 3 we take, e1,2 = q1,2 = 0, which mean we do not
have to travel between Ii, Ii+1 and Ei, Ei+1. Then we have,

R0 = max
i=1,2,3,4

rβiεi
(εi + di)(ai + di + γi)

. (66)

Now, we use, β1 = 0.014, β2 = 0.012, β3 = 0.014, β4 = 0.012, for R
(i)
0 > 1(i =

1, 2, 3, 4.), R0 > 1 and β1 = 0.007, β2 = 0.007, β3 = 0.008, β4 = 0.006, for

R
(1)
0 , R

(4)
0 , R

(2)
0 , R

(3)
0 , R0 < 1 (Figure 6).
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(a)

Time

I1

I2

I3

I4

(a)

Time

I1

I3

I4

I1

I2

I3
I4

(b)

Time

Figure 5. (a): R0 = max{R(1)
0 = 0.8131 < 1, R

(2)
0 = 0.9214 <

1, R
(3)
0 = 2.0726 > 1, R

(4)
0 = 2.4704 > 1} = 2.4704 > 1 and (b):

R0 = max{R(1)
0 = 0.9525 < 1, R

(2)
0 = 0.9444 < 1, R

(3)
0 = 0.9875 <

1, R
(4)
0 = 0.9881 < 1} = 0.9525 < 1.

(a)

Time

I1

I3

I4

I1

I3
I4

(b)

Time

I1

I2

I3

I4

(a)

Time

(b)

Time

I1

I2

I3

I4

Figure 6. (a): R
(1)
0 = 1.9236 > 1, R

(2)
0 = 1.3821 > 1, R

(3)
0 = 1.7068 >

1, R
(4)
0 = 1.3821 > 1, R0 = 1.9236 > 1 and (b): R

(1)
0 = 0.9618 < 1, R

(2)
0 =

0.8062 < 1, R
(3)
0 = 0.9753 < 1, R

(4)
0 = 0.9881 < 1, R0 = 0.9881 < 1

Example 5. Suppose that we do not have to travel between patches and we used,
β1 = 0.017, β2 = 0.006, β3 = 0.014, β4 = 0.004, d1 = 0.005, d2 = 0.004, d3 =
0.003, d4 = 0.002, a1 = 0.6, a2 = 0.8, a3 = 0.7, a4 = 0.5 for Figure 7.(a) and
β1 = 0.036, β2 = 0.042, β3 = 0.026, β4 = 0.036, d1 = 0.5, d2 = 0.4, d3 = 0.3, d4 =
0.2, a1 = a2 = a3 = a4 = 0 for Figure 7.(b).
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(b)

I1

I2

I3

(a)

Time

I1

I2 I3
I4

(b)

I1

I2

I3

(a)

Time

I2

I1

I2

I3

I4

(b)

Time

Figure 7. (a): R
(1)
0 = 2.3358 > 1, R

(2)
0 = 0.6910 < 1, R

(3)
0 = 1.7068 >

1, R
(4)
0 = 0.6588 < 1 and (b): R

(1)
0 = 0.8561 < 1, R

(2)
0 = 1.3362 >

1, R
(3)
0 = 0.8497 < 1, R

(4)
0 = 1.3091 > 1

3. Conclusion

One of the fundamental questions of mathematical epidemiology is to find
threshold conditions that determine whether an infectious disease will spread
in a susceptible population when the disease is introduced into the population.
The threshold conditions are characterized by the so called reproductive number
or contact number, commonly denoted by R0 in mathematical epidemiology
[9, 8, 10]. The reproductive number plays an important role in understanding
transmission dynamics of epidemics and predicting spread of epidemics. In this
article first we formulate a heterogeneous model, then we used the spectral radius
of the next generation operator of infection [2, 5, 7], in finding a formula for the
reproductive number, R0, thus if R0 < 1 the modelled disease dies out and if
R0 > 1 the disease spreads in the population. As an instance in in Example 1
we see that for R0 < 1 the disease dies out (Figure 3.(b)) and for R0 > 1 the
disease spreads in the population (Figure 3.(b)).
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