DOI QR코드

DOI QR Code

Effect of Heat Treatment on Biohydrogen Production from Food Waste

음식폐기물의 생물학적 수소 발효시 열처리 효과

  • Lee, Chae-Young (Department of Civil Engineering, The University of Suwon) ;
  • Park, In-Geun (Department of Civil Engineering, The University of Suwon)
  • 이채영 (수원대학교 토목공학과) ;
  • 박인근 (수원대학교 토목공학과)
  • Received : 2010.03.09
  • Accepted : 2010.03.29
  • Published : 2010.03.31

Abstract

Characteristic of hydrogen production was investigated to find the optimum heat pretreatment conditions for the anaerobic fermentation of food waste. The heat pretreatment of food waste enhanced the hydrogen yield due to the increase of soluble chemical oxygen demand (SCOD) and carbohydrate content. This result revealed that the maximum degrees of disintegration of SCOD and carbohydrate content were 55.1% and 223.6%, respectively. On the other hand, the improvement of hydrogen yield was insignificantly affected by heating reaction time at longer than 20 min; the increase of hydrogen yield was only about 7% between 20min and 1 hour. Therefore, the increase of reaction time more than 20min was not necessary.

음식폐기물의 혐기성 발효시 열적 전처리의 최적 조건을 도출하기 위하여 수소 발생 특성을 평가하였다. 음식폐기물의 열적 전처리의 경우 용해성 화학적 산소요구량(SCOD)과 탄수화물 함량을 증가시켜 수소 수율을 향상시키는 것으로 나타났다. 실험결과 SCOD와 탄수화물을 기준으로 한 최대 가용화 효율은 각각 55.1%와 223.6%로 나타났다. 반응시간에 따라 전처리 효과는 증가하는 경향을 보였으나 20분간 1시간 비교시 약 7%의 차이를 보여 20분 이상의 반응시간의 증가는 크지 않은 것으로 나타났다.

Keywords

References

  1. 환경부, "전국 폐기물 발생 및 처리현황" (2008).
  2. 김종오, 조경환, 이창호, "혐기성 소화를 위한 음식물쓰레기 전처리 방안에 관한 기초연구", 한국유기성폐자원학회, 11(3), pp. 60-66 (2003).
  3. Hawkes, F. R., Dinsdale, R., Hawkes, D. L., and Hussy. I., "Sustainable fermentative hydrogen production : challenges for process optimization", Int. J. Hydrogen Energ, 27, pp. 1339-1347 (2002). https://doi.org/10.1016/S0360-3199(02)00090-3
  4. Payot, R., Guedon, E., Cailliez. C., Gelhage. E., and Petitdemange, H., "Mctabolism of cellobiose by Clostridium celluolyticum growing in continuous culture evidence for decreased NADH reoxidation as a factor limiting growth", Microbiology, 144, pp. 375-384 (1998). https://doi.org/10.1099/00221287-144-2-375
  5. 이준철, 김재형, 최광근, 박대원, "음식물쓰레기와 전처리한 폐활성슬러지의 혼합비율에 따른 생물학적 수소생산", 대한환경공학회, pp.1044-1050 (2007).
  6. Kim, D. H., Kim, S. H., and Shin, H. S., "Hydrogen fermentation of food waste without inoculum addition", Enzyme and Microbial Technology, 45, pp. 181-187 (2009). https://doi.org/10.1016/j.enzmictec.2009.06.013
  7. 남주연, 김상현, 김동훈, 신항식, "Enhancement of hydrogen fermentation of alkalified food waste and sewage sludge", 대한환경공학회 2005 추계학술연구발표회, pp. 451-455 (2005).
  8. Lay, J. J., "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen", Biotehnology Bioengineering, 68, pp. 280-287 (2000).
  9. Kim, D. H., Kim, S. H., Shin, H. S., "Sodium inhibition of fermentative hydrogen production", International Journal of Hydrogen Energy, 34, pp. 3295-3304 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.051
  10. Pan, J., Zhang, R., El-Mashad, H. M., Sun, H., and Ying, Y., "Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation", International Journal of Hydrogen Energy, 33, pp. 6968-6975 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.130
  11. Kim, S. H., Han, S. K., and Shin, H. S., "Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge", International Journal of Hydrogen Energy, 29. pp. 1607-1616 (2004). https://doi.org/10.1016/j.ijhydene.2004.02.018
  12. Shin, H. S., and Youn, J. H., "Conversion of food waste into hydrogen by thermophilic acidogenesis", Biodegradation, 16, pp. 33-44 (2005). https://doi.org/10.1007/s10531-004-0377-9
  13. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 18th edition, Am. Public Health Assoc., Washington, D. C., USA (1992).
  14. Dubois M., GiIles K. A. Hamilton J. K., Rebers P. A., Smith F., "Colormetric method for determination of sugars and related substances", Anal. Chem. 28(3), pp. 350-356 (1956). https://doi.org/10.1021/ac60111a017
  15. Li, H., Jin, Y., Mahar, R., Wang, Z., Nie, Y., "Effects and model of alkaline waste acticated sludge treatment", Bioresourse Technology 99, pp, 5140-5144 (2008). https://doi.org/10.1016/j.biortech.2007.09.019