DOI QR코드

DOI QR Code

IRROTATIONAL SCREEN HOMOTHETIC HALF LIGHTLIKE SUBMANIFOLDS

  • Jin, Dae Ho (Department of Mathematics Dongguk University)
  • Received : 2009.12.09
  • Accepted : 2010.04.23
  • Published : 2010.06.30

Abstract

In this paper, we study the geometry of half lightlike submanifolds of a Lorentzian manifold. The main result is a characterization theorem for irrotational screen homothetic half lightlike submanifolds of a Lorentzian space form.

Keywords

References

  1. C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, International J. of Pure and Applied Math. 11 (2004), no. 4, 421-442.
  2. B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
  3. K. L. Duggal, On canonical screen for lightlike submanifolds of codimension two, Central European Joural of Math. 5 (2007), no. 4, 710-719. https://doi.org/10.2478/s11533-007-0026-0
  4. K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  5. D. H. Jin, Einstein half lightlike submanifolds with a Killing co-screen distribution, Honam Math. J. 30 (2008), no. 3, 487-504. https://doi.org/10.5831/HMJ.2008.30.3.487
  6. D. H. Jin, Einstein half lightlike submanifolds of codimension 2, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 16 (2009), no. 1, 31-46.
  7. D. H. Jin, A characterization of screen conformal half lightlike submanifolds, Honam Math. J. 31 (2009), no. 1, 17-23. https://doi.org/10.5831/HMJ.2009.31.1.017
  8. D. H. Jin, Screen conformal lightlike hypersurfaces of a semi-Riemannian space form, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 16 (2009), no. 3, 271-276.
  9. D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.
  10. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.