Study of Hydrodynamics and Reaction Characteristics of K-based Solid Sorbents for CO2 Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors

두 개의 기포유동층으로 구성된 연속장치에서 CO2 회수를 위한 K-계열 고체흡수제의 수력학적 특성 및 반응특성

  • Kim, Ki-Chan (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Kim, Kwang-Yul (Department of Environmental and Urban Engineering, Chungbuk National University) ;
  • Park, Young Cheol (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Jo, Sung-Ho (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Ryu, Ho-Jung (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Yi, Chang-Keun (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 김기찬 (한국에너지기술연구원 온실가스연구단) ;
  • 김광렬 (충북대학교 환경.도시공학과) ;
  • 박영철 (한국에너지기술연구원 온실가스연구단) ;
  • 조성호 (한국에너지기술연구원 온실가스연구단) ;
  • 류호정 (한국에너지기술연구원 온실가스연구단) ;
  • 이창근 (한국에너지기술연구원 온실가스연구단)
  • Received : 2010.03.15
  • Accepted : 2010.04.29
  • Published : 2010.08.31

Abstract

In this study, hydrodynamics and reaction characteristic of K-based solid sorbents for $CO_2$ capture were investigated using a continuous system composed of two bubbling fluidized-bed reactors(1.2 m tall bed with 0.11 m i.d.). Potassium-based dry sorbents manufactured by the Korea Electric Power Research Institute were used, which were composed of $K_2CO_3$ of 35% for $CO_2$ absorption and supporters of 65% for mechanical strength. The continuous system consists of two bubbling fluidized-bed reactors, solid injection nozzle, riser, chiller, analyzer and heater for regeneration reaction. The minimum fluidizing velocity of the continuous system was 0.0088 m/s and the solid circulation rate measured was $10.3kg/m^2{\cdot}s$ at 1.05 m/s velocity of the solid injection nozzle. The $CO_2$ concentration of the simulated gas was about 10 vol% in dry basis. Reaction temperature in carbonator and regenerator were maintained about $70^{\circ}C$ and $200^{\circ}C$, respectively. Differential pressures, which were maintained in carbonator and regenerator, were about $415mmH_2O$ and $350mmH_2O$, respectively. In order to find out reaction characteristics of dry sorbents, several experiments were performed according to various experimental conditions such as $H_2O$ content(7.28~19.66%) in feed gas, velocity (0.053~0.103 m/s) of simulated gas, temperature($60{\sim}80^{\circ}C$) of a carbonator, temperature($150{\sim}200^{\circ}C$) of a regenerator and solid circulation rate($7.0{\sim}10.3kg/m^2{\cdot}s$). The respective data of operating variables were saved and analyzed after maintaining one hour in a stable manner. As a result of continuous operation, $CO_2$ removal tended to increase by increasing $H_2O$ content in feed gas, temperature of a regenerator and solid circulation rate and to decrease by increasing temperature of a carbonator and gas velocity in a carbonator.

본 연구에서는 두 개의 기포유동층으로 구성된 연속장치(높이: 1.2 m, 내경: 0.11 m)를 이용하여 실험장치의 최소유동화속도와 고체순환량을 측정하여 수력학적 특성을 파악하고 흡수-재생 조업변수에 의한 반응특성을 알아보았다. 사용된 K-계열 건식흡수제는 한국전력연구원으로부터 공급되었고 $CO_2$ 흡수를 위한 35%의 탄산칼륨과 기계적 강도를 위한 65%의 지지체로 구성되어 있다. 연속 장치는 두 개의 기포유동층 반응기, 수송관, 상승관, 냉각장치, 분석기, 히터 등으로 구성되어 있다. 이 장치의 최소유동화속도는 0.0088 m/s이고 수송관의 유속이 1.05 m/s일 때 고체순환량은 $10.3kg/m^2{\cdot}s$로 측정되었다. 모사가스를 이용하여 실험을 수행하였고 흡수반응기 입구 $CO_2$ 농도(Dry basis)는 약 10 vol%였고, 온도는 흡수반응온도 $70^{\circ}C$, 재생반응온도 $200^{\circ}C$에서 각각 일정하게 유지하였다. 반응기의 차압은 흡수반응기 $415mmH_2O$, 재생반응기 $350mmH_2O$에서 안정적으로 유지하였다. 실험은 조업변수들인 $H_2O$ 주입농도(7.28~19.66%), 모사가스 유속(0.053~0.103 m/s), 흡수반응온도($60{\sim}80^{\circ}C$), 재생반응온도($150{\sim}200^{\circ}C$), 고체순환량($7.0{\sim}10.3kg/m^2{\cdot}s$)의 변화에 따라 반응실험이 실시되었다. 각 변수실험은 정상상태 도달 후 1시간 정도 유지한 후 결과를 저장, 분석하였다. 실험결과 수증기 주입량, 재생반응온도, 고체순환량이 증가할수록 제거율은 증가하였고 흡수반응온도, 유속이 증가함에 따라 제거율은 감소하였다.

Keywords

References

  1. Lee, J. B., "Status of Development on Chemical Looping Combustion Technology," KIC News, 12(1), 50-59(2009).
  2. Eum, H. M. and Kim, S. C., "Oxy-Combustion Technology for $CO_2$ Capture," KIC News, 12(1), 43-49(2009).
  3. Park, J. H. and Baek, I. H., "Status and Prospect of Pre-combustion $CO_2$ Capture Technology," KIC News, 12(1), 3-14(2009).
  4. Yi, C. K., "Advances of Carbon Capture Technology," KIC News, 12(1), 30-42(2009).
  5. Hoffman, J. S. and Pennline, H. W., "Investgation of $CO_2$ Capture Using Regenerable Sorbents," The Proceedings of 17th Annual International Pittsburgh Coal Conference(2000).
  6. Metz, B., Davidson, O., de Coninck, H., Loos, M. and Meyer, L., "IPCC Special Report on Carbon Dioxide Capture and Storage," Cambridge University Press, New York(2005).
  7. Yi, C. K., Hong, S. W., Jo, S. H., Son, J. E. and Choi, J. H., "Absorption and Regeneration Characteristics of a Sorbent for Fluidized-Bed $CO_2$ Removal Process," Korean Chem. Eng. Res., 43(2), 294-298(2005).
  8. Liang, Y., Harrison, D. P., Gupta, R. P., Green, D. A. and McMichael, W. J., "Carbon Dioxide Capture Using Dry Sodium-based Sorbents," Energy Fuels, 18(2), 569-575(2004). https://doi.org/10.1021/ef030158f
  9. Park, Y. C., Jo, S. H., Ryu, C. K. and Yi, C. K., "Long-Term Operation of Carbon Dioxide Capture System from a Real Coal-Fired Flue Gas Using Dry Regenerable Potassium-Based Sorbents," Energy Procedia, 1235-1239(2009).
  10. Yi, C. K., Jo, S. H., Seo, Y. W., Park, S. D., Moon, K. H., Yoo, J. S., Lee, J. B. and Ryu, C. K., "Feasibility Test for $CO_2$ Capture by Dry Sorbents in Two Fluidized Bed Reactors," Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration, DOE/NETL(2005).
  11. Yi, C. K., Jo, S. H., Ryu, H. J., You, Y. W., Hong, S. W., Kim, M. S., Lee, S. Y. and Shun, D. W., "Reaction Characteristics for $CO_2$ Capture by Dry Sorbents in Fluidized Bed Reactors," Theor. Appl. Chem. Eng., 9(2), 2569(2003).
  12. Yi, C. K., Jo, S. H., Seo, Y. W., Lee, J. B. and Ryu, C. K., "Continuous Operation of the Potassium-based Dry Sorbent $CO_2$ Capture Process with Two Fluidized-bed Reactors," International Journal of Greenhouse Gas Control, 1(1), 31-36(2007). https://doi.org/10.1016/S1750-5836(07)00014-X
  13. Ryu, H. J., Lee, S. Y., Park, Y. C. and Park, M. H., "Solid Circulation Rate and Gas Leakage Measurements in and Interconnected Bubbling Fluidized Beds," International Journal of Applied Science, Engineering and Technology, 4(2), 113-118(2008).
  14. Ryu, H. J., Jang, M. S., Kim, H. K. and Lee, D. K., "A Study on Two-interconnected Fluidized Beds System for Selective Solid Circulation," Korean Chem. Eng. Res., 47(3), 337-343(2009).
  15. Ryu, H. J., Park, Y. C., Jo, S. H. and Park, M. H., "Development of Novel Two-interconnected Fluidized Bed System," Korean J. Chem. Eng., 25(5), 1178-1183(2008). https://doi.org/10.1007/s11814-008-0194-z
  16. Ryu, H. J., Park, J., Kim, H. K. and Park, M. H., "Solid Circulation Characteristics in a 3KW Chemical-looping Combustor," Korean Chem. Eng. Res., 46(6), 1057-1062(2009).
  17. Ryu, H. J., Lim, N. Y., Bae, D. H. and Jin, G. T., "Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier Particle for Chemical-Looping Combustor," HWAHAK KONGHAK, 41(5), 624-631(2003).
  18. Park, Y. C., Kim, K. C., Lee, S. Y., Jo, S. H. and Yi, C. K., "Effects of Steam on the Regeneration of Potassium-Based Solid Sorbents in Carbon Dioxide Capture System Composed of Two-interconnected Bubbling Beds," Ascon, Japan(2008).
  19. Ryu, C. K., Lee, J. B., Eom, T. H., Oh, J. M. and Yi, C. K., "Development of Na and K-Based Sorbents for $CO_2$ Capture from Flue Gas," Proceedings of the 4th Annual Conference on Carbon Capture and Sequestration, DOE/NETL(2005).
  20. Kunii, D. and Levenspiel, O., "Fluidization Engineering, 2nd ed.," Butterworth-Heinemann, Boston(1991).
  21. Park, K. W., Park, Y. S., Park, Y. C., Jo, S. H. and Yi, C. K., "Study of $CO_2$ Carbonation-Regeneration Characteristics Potassium- Based Dry Sorbents According to Water Vapor Contents of Inlet Gas and Regeneration Temperature in the Cycle Experiments of Bubbling Fluidized-bed Reactor," Korean Chem. Eng. Res., 47(3), 349-354(2009).
  22. Seo, Y. W., Moon, Y. S., Jo, S. H., Ryu, C. K. and Yi, C. K. "Effects of Steam and Temperature on $CO_{2}$ Capture Using a Dry Regenerable Sorbent in a Bubbling Fluidized Bed," Korean Chem. Eng. Res., 43(4), 537-541(2005).
  23. Hayashi, H., Taniuchi, J., Furuyashiki, N., Sugiyama, S., Hirano, S., Shigemoto, N. and Nonaka, T., "Efficient Recovery of Carbon Dioxide from Flue Gases of Coal-fired Power Plant by Cyclic Fixedbed Operations over $K_2CO_3-on-Carbon$," Ind. Eng. Chem. Res., 37(1), 185-191(1998). https://doi.org/10.1021/ie9704455
  24. Lee, S. C., Choi, B. Y., Lee, T. J., Ryu, C. K., Ahn, Y. S. and Kim, J. C., "$CO_2$ Absorption and Regeneration of Alkali Metalbased Solid Sorbents," Catal. Today, 111(3-4), 385-390(2006). https://doi.org/10.1016/j.cattod.2005.10.051