섬유의 종류와 조합이 열중합 의치상 레진의 강화에 미치는 영향

Effect of Fiber Type and Combination on the Reinforcement of Heat Polymerized Denture Base Resin

  • 유상희 (원광대학교 치과대학 치과생체재료학교실) ;
  • 김영임 (전주비전대학 치위생과)
  • Yu, Sang-Hui (Dept. of Dental Biomaterials, College of Dentistry, Wonkwang University) ;
  • Kim, Young-Im (Dept. of Dental Hygiene, Vision College of Jeonju)
  • 투고 : 2010.11.10
  • 심사 : 2010.12.13
  • 발행 : 2010.12.31

초록

본 연구에서는 열중합 의치상 레진에 유리 섬유, 아라미드 섬유, 폴리에틸렌 섬유를 2.6%, 5.3% 부피비로 첨가하여 섬유의 종류에 따른 강화효과를 평가하고, 각 섬유를 두 가지로 조합한 hybrid FRC를 제작하여 동일 함량의 단독 섬유 FRC보다 굴곡성질이 더 우수한지 평가하고자 하였다. 단독 섬유 FRC에서는 5.3% 부피비의 GL, PE 섬유군의 굴곡강도가 높게 나타났다. 두 가지 섬유 조합FRC의 굴곡강도는 단독 섬유 FRC보다 증가하는 양상을 보였으나, 5.3% GL, PE 섬유군과 유의한 차이가 없었다. 단독 섬유 FRC의 굴곡계수는 5.3% 부피비의 GL 섬유군이 가장 높게 나타났다. 두 가지 섬유 조합FRC의 굴곡계수는 단독 섬유 FRC의 5.3% GL 섬유군보다 높게 나타나 유의한 차이를 보였다. 열중합 의치상 레진의 강화를 위해 섬유를 단독으로 이용할 경우 5.3% 부피비로 첨가한 유리 섬유가 굴곡강도와 굴곡계수 면에서 효과적으로 적용될 수 있을 것으로 본다. 두 가지 섬유 조합FRC의 경우 굴곡강도 면에서는 강화효과가 크지 않았지만, 굴곡계수 면에서 볼 때 유리섬유를 하방에 아라미드 섬유를 그 상방에 위치 시킨 조합을 의치상의 강화에 효과적으로 적용할 수 있을 것으로 본다.

The aim of this study was to evaluate the effect according to the fiber type and combination on the reinforcement of heat-polymerized denture base resin. The heat-polymerized resin(Vertex RS, Dentimax, Netherlands) was used in this study. Glass fiber(GL; ER 270FW, Hankuk Fiber Glass, Korea), polyaromatic polyamide fiber(PA; aramid; Kevlar-49, Dupont, U.S.A.) and ultra high molecular weight polyethylene fiber(PE, polyethylene; P.E, Dong Yang Rope, Korea) were used to reinforce the denture base resin specimens. The final size of test specimen was $64mm{\times}10mm{\times}3.3mm$. The specimens of each group were stored in distilled water at $37^{\circ}C$ for 50 hours before measurement. The flexural strength and flexural modulus were measured by an universal testing machine(Z020, Zwick, Germany) at a crosshead speed of 5 mm/min in a three-point bending mode. In this study, all fibers showed reinforcing effects on denture base resin(p<0.05). In terms of flexural strength and flexural modulus, glass fiber 5.3 vol.% showed most effective reinforcing effect on heat polymerized denture base resin. For flexural modulus, PA/GL was the highest in denture base resin specimen for hybrid FRC using two combination (p<0.05). Glass fiber 5.3 vol.% and PA/GL are considered to be applied effectively in reinforcing the heat polymerized denture base resin.

키워드

참고문헌

  1. John J, Gangadhar SA, Shah I: Flexural strength of heatpolymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers. J Prosthet Dent 86(4): 424-427, 2001. https://doi.org/10.1067/mpr.2001.118564
  2. Nakamura M, Takahashi H, Hayakawa I: Reinforcement of denture base resin with short-rod glass fiber. Dent Mater J 26(5): 733-738, 2007. https://doi.org/10.4012/dmj.26.733
  3. Narva KK, Lassila LV, Vallittu PK: The static strength and modulus of fiber reinforced denture base polymer. Dent Mater 21(5): 421-428, 2005. https://doi.org/10.1016/j.dental.2004.07.007
  4. Darbar UR, Huggett R, Harison A: Denture fracture-A survey. Br Dent J 176(9): 342-345, 1994. https://doi.org/10.1038/sj.bdj.4808449
  5. Beyli MS, von Fraunhofer: An analysis of causes of fracture of acrylic resin dentures. J Prosthet Dent 46(3): 238-241, 1981. https://doi.org/10.1016/0022-3913(81)90206-7
  6. Hargreaves AS: The prevalence of fractured dentures. A survey. Br Dent J 126(10): 451-455, 1969.
  7. Morris JC, Khan Z, von Fraunhofer JA: Palatal shape and the flexural strength of maxillary denture bases. J Prosthet Dent 53(5): 670-673, 1985. https://doi.org/10.1016/0022-3913(85)90018-6
  8. Vallittu PK: Flexural properties of acrylic polymers reinforced with unidirectional and woven glass fibers. J Prosthet Dent 81(3): 318-326, 1999. https://doi.org/10.1016/S0022-3913(99)70276-3
  9. Carroll CE, von Fraunhofer JA: Wire reinforcement of acrylic resin prostheses. J Prosthet Dent 52(5): 639-641, 1984. https://doi.org/10.1016/0022-3913(84)90132-X
  10. Ruffino AR: Effect of steel strengtheners on fracture resistance of the acrylic resin complete denture base. J Prosthet Dent 54(1): 75-78, 1985. https://doi.org/10.1016/S0022-3913(85)80074-3
  11. Vallittu PK: A review of methods used to reinforce polymethyl methacrylate resin. J Prosthet Dent 4(3): 183-187, 1995.
  12. Sehajpal SB, Sood VK: Effect of metal fillers on some physical properties of acrylic resin. J Prosthet Dent 61(6): 746-751, 1989. https://doi.org/10.1016/S0022-3913(89)80055-1
  13. Polyzois GL, Andreopoulos AG, Lagouvardos PE: Acrylic resin denture repair with adhesive resin and metal wires: effects on strength parameters. J Prosthet Dent 75(4): 381-387, 1996. https://doi.org/10.1016/S0022-3913(96)90029-3
  14. Nagai E, Otani K, Satoh Y, Suzuki S: Repair of denture base resin using woven metal and glass fiber: effect of methylene chloride pretreatment. J Prosthet Dent 85(5): 496-500, 2001. https://doi.org/10.1067/mpr.2001.115183
  15. Bae JM et al.: Fatigue strengths of particulate filler composites reinforced with fibers. Dent Mater J 23(2): 166-174, 2004. https://doi.org/10.4012/dmj.23.166
  16. Callister WD: Materials science and engineering: an introduction. 7th ed. John Wily & Son. pp.595-607, 2007.
  17. Ekstrand K, Ruyter IE, Wellendorf H: Carbon/graphite fiber reinforced poly(methyl methacrylate): properties under dry and wet conditions. J Biomed Mater Res 21(9): 1065-1080, 1987. https://doi.org/10.1002/jbm.820210902
  18. Kanie T, Fujii K, Arikawa H, Inoue K: Flexural properties and impact strength of denture base polymer reinforced with woven glass fibers. Dent Mater 16(2): 150-158, 2000. https://doi.org/10.1016/S0109-5641(99)00097-4
  19. Stipho HD: Repair of acrylic resin denture base reinforced with glass fiber. J Prosthet Dent 80(5): 546-550, 1998. https://doi.org/10.1016/S0022-3913(98)70030-7
  20. Vallittu PK, Narva KK: Impact strength of a modified continuous glass fiber-poly(methyl methacrylate). Int J Prosthodont 10(2): 142-148, 1997.
  21. Mallick PK: Fiber-reinforced composites. 2nd ed. Marcel Dekker, New York, pp.6-84, 1993.
  22. Berrong JM, Weed RM, Young JM: Fracture resistance of Kevlar-reinforced poly(methyl methacrylate) resin: a preliminary study. Int J Prosthodont 3(4): 391-395, 1990.
  23. Uzun G, Hersek N, Tincer T: Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J Prosthet Dent 81(5): 616-620, 1999. https://doi.org/10.1016/S0022-3913(99)70218-0
  24. Vallittu PK, Lassila VP: Reinforcement of acrylic resin denture base material with metal or fiber strengthener. J Oral Rehabil 19(3): 225-230, 1992. https://doi.org/10.1111/j.1365-2842.1992.tb01096.x
  25. Unlu N, Belli S: Three-year clinical evaluation of fiberreinforced composite fixed partial dentures using prefabricated pontics. J Adhes Dent 8(3): 183-188, 2006.
  26. Deliperi S, Bardwell DN, Coiana C: Reconstruction of devital teeth using direct fiber-reinforced composite resins: a case report. J Adhes Dent 7(2): 165-171, 2005.
  27. Drummond JL, Bapna MS: Static and cyclic loading of fiberreinforced dental resin. Dent Mater 19(3): 226-231, 2003. https://doi.org/10.1016/S0109-5641(02)00034-9
  28. Karaman AI, Kir N, Belli S: Four applications of reinforced polyethylene fiber material in orthodontic practice. Am J Orthod Dentofacial Orthop 121(6): 650-654, 2002. https://doi.org/10.1067/mod.2002.123818
  29. Bae JM et al.: The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix. Int J Prothodont 14(1): 33-39, 2001.
  30. Tanimoto Y, Nishiwaki T, Nemoto K: Numerical failure analysis of glass-fiber-reinforced composites. J Biomed Mater Res A 68(1): 107-113, 2004.
  31. Garoushi S, Vallittu PK, Lassila LV: Fracture resistance of short, randomly oriented, glass fiber-reinforced composite premolar crowns. Acta Biomater 3(5): 779-784, 2007. https://doi.org/10.1016/j.actbio.2007.02.007
  32. Dogan OM et al.: The effect of esthetic fibers on impact resistance of a conventional heat-cured denture base resin. Dent Mater J 26(2): 232-239, 2007. https://doi.org/10.4012/dmj.26.232
  33. Kanie T et al.: Deformation and flexural properties of denture base polymer reinforced with glass fiber sheet. Dent Mater J 24(3): 297-303, 2005. https://doi.org/10.4012/dmj.24.297
  34. Kanie T et al.: Light-curing reinforcement for denture base resin using a glass fiber cloth pre-impregnated with various urethane oligomers. Dent Mater J 23(3): 291-296, 2004. https://doi.org/10.4012/dmj.23.291
  35. Bertassoni LE et al.: Effect of pre-and postpolymerization on flexural strength and elastic modulus of impregnated, fiberreinforced denture base acrylic resins. J Prosthet Dent 100(6): 449-457, 2008. https://doi.org/10.1016/S0022-3913(08)60263-2
  36. Capaccio G, Ward IM: Properties of ultra-high-modulus linear polyethylene. Nature, Phys Sci 243(1): 143-145, 1973.
  37. Ward IM: The preparation, structure and properties of ultrahigh modulus flexible polymers. Adv Polymer Sci 70(10): 1-70, 1985.
  38. Son DK et al.: The reinforcing effect of fiber according to the type, content, and combination on resin matrix. The journal of the korea research society for dental materials 35(1): 29-38, 2008.