A COMPLETE CONVERGENCE FOR LINEAR PROCESS UNDER ρ-MIXING ASSUMPTION

  • Kim, Hyun-Chull (Department of Mathematics Education Daebul University) ;
  • Ryu, Dae-Hee (Department of Computer Science ChungWoon University)
  • Received : 2009.12.15
  • Accepted : 2009.02.16
  • Published : 2010.03.30

Abstract

For the maximum partial sum of linear process generated by a doubly infinite sequence of identically distributed $\rho$-mixing random variables with mean zeros, a complete convergence is obtained under suitable conditions.

Keywords

Acknowledgement

Supported by : Chungwoon University

References

  1. R. M. Burton and H. Dehling, Large devation for some weakly dependent random processes, Statist. Probab. Lett. 9 (1990), 397-401 https://doi.org/10.1016/0167-7152(90)90031-2
  2. P. Chen, T. C. Hu, and A. Volodin, Limiting behavier of moving average process under $\rho$-mixing assumption, Statist. Probab. Lett. 79 (2009), 105-111 https://doi.org/10.1016/j.spl.2008.07.026
  3. I. A. Ibragimov, Some limit theorem for stationary processes, Theory Probab. Appl. 7 (1962), 349-382 https://doi.org/10.1137/1107036
  4. T. S. Kimand M. H. Ko, Complete moment convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. (2008), 839- 896
  5. A. N. Kolmogorov and U. N. Rozanov, On the strong mixing conditions of a stationary Gaussian process, Probab. Theory Appl. 2 (1960), 222-227
  6. D. Li, M. B. Rao, and X. C. Wang, Complete convergence of moving average processes, Statist. Probab. Lett. 14 (1992), 111-114 https://doi.org/10.1016/0167-7152(92)90073-E
  7. Y. X. Li and L. X. Zhang, Complete moment convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. 20 (2004), 191- 197
  8. Q. M. Shao, On the complete convergence for $\rho$-mixing sequences, Acta Mathematica Sinica 32 (1989), 377-393
  9. Q. M. Shao, Maximal inequality for partial sums of $\rho$-mixing sequences, Ann. Probab. 23 (1995), 948-965 https://doi.org/10.1214/aop/1176988297
  10. L. Zhang, Complete convergence of moving average process under dependence assumptions, Statist. Probab. Lett. 30 (1996), 165-170 https://doi.org/10.1016/0167-7152(95)00215-4