ON THE C-NETS

  • Lee, Seung On (Department of Mathematics Chungbuk National University) ;
  • Pi, Young Jin (Department of Mathematics Chungbuk National University) ;
  • Oh, Ji Hyun (Department of Mathematics Chungbuk National University)
  • Received : 2009.11.26
  • Accepted : 2010.01.26
  • Published : 2010.03.30

Abstract

In this paper, we define the concept of a c-net and study the convergence of c-nets. Also we show that a c-net in a topological space X has a convergent sub-c-net if and only if X is a $Lindel{\ddot{o}}f$ space, if every $G_{\delta}$ set is open in X.

Keywords

References

  1. D. W. Barnes and J. M. Mack, An algebraic Introduction to Mathematical Logic, Springer Verlag, New York, 1975.
  2. N. Bourbaki, General Topology, Part I, Hermann, Paris, 1966.
  3. B. A. Davey and H. A. Priestly, Introduction to lattices and order, Cambridge University Press, Cambridge, 1990.
  4. J. Dugundji, Topology, Allyn and Bacon., Boston, 1966.
  5. R. H. Kasriel, Undergraduate topology, W. B. Saunders., London, 1971.
  6. J. L. Kelley, General topology, Springer Verlag, New York, 1955.
  7. S. O. Lee, On countably approximating lattices, J. of Korean Math. Soc. 25 (1988), 3-11.
  8. E. H. Moore and H. L. Smith, A General Theory of Limits, American Journal of Mathematics. 44 (1922), 102-121. https://doi.org/10.2307/2370388
  9. L. Nachbin, Topology and Order, D. Van Nostrand Co., Princeton, 1965.
  10. H. L. Royden, Real Analysis, Third edition, Macmillan, 1988.