Characteristics of Anaerobic Methane Production by Ultrasonic Treatment of Excess Sludge

잉여슬러지의 초음파 처리에 의한 혐기성 소화에서의 메탄생성 특성 연구

  • Lee, Jonghak (Division of Environmental Engineering, Yonsei University) ;
  • Jeong, Tae-Young (Division of Environmental Engineering, Yonsei University) ;
  • Roh, Hyun-Seog (Division of Environmental Engineering, Yonsei University) ;
  • Kim, Dongjin (Department of Environmental Sciences and Biotechnology, Hallym University)
  • 이종학 (연세대학교 환경공학부) ;
  • 정태영 (연세대학교 환경공학부) ;
  • 노현석 (연세대학교 환경공학부) ;
  • 김동진 (한림대학교 환경생명공학과)
  • Received : 2010.06.08
  • Accepted : 2010.08.10
  • Published : 2010.09.30

Abstract

Ultrasonic sludge pre-treatment has been studied to enhance the performance of anaerobic digestion by increasing sludge hydrolysis which is regarded as the rate-limiting-step of anaerobic digestion. In this study, the effect of ultrasonic pre-treatment on sludge hydrolysis (solubilization) and methane production was investigated. Sludge solubilization efficiency increased with ultrasonic energy input. However, it is uneconomical to apply more than 720 kJ/L as the solubilization efficiency per energy input declines afterwards. Volatile fatty acids concentration increased after the ultrasonic sludge hydrolysis. Anaerobic batch digestion showed that methane volume reached 64.7 and 84.5 mL after 18 days of incubation with the control sludge and ultrasonically hydrolyzed sludge, respectively. Methane production potential, maximum methane production rate, and the lag time of modified Gompertz equation were changed from 70 mL, 6.4 mL/day, and 1.2 days to 89 mL, 9.6 mL/day, and 0.5 day, respectively, after the ultrasonic sludge treatment. The results proved that ultrasonic pre-treatment contributed significantly not only for the methane production but also for the reduction of anaerobic digestion time which is critical for the performance of anaerobic sludge digestion.

Keywords

References

  1. 맹장우, 배재호(2009). 수리동력학적 및 초음파 캐비테이션 슬러지 전처리 장치의 비교 연구. 대한환경공학회지, 31(2), pp. 90-95.
  2. 손춘호, 홍승모, 이병헌(2007). 산용해 및 초음파를 이용한 하수 슬러지의 산발효 특성. 수질보전 한국물환경학회지, 23(5), pp. 781-788.
  3. 안재환, 김미경, 배재호, 김희준(2007). 혐기성 소화효율 향상을 위한 초음파를 이용한 슬러지 전처리 및 ADMl 모의. 대한환경공학회지, 29(1), pp. 98-105.
  4. APHA, AWWA and WPCF (1989). Standard Methods for the Examination of Water and Wastewater, 17th edition, American Public Health Association, Washington D.C.
  5. Appels, L., Baeyens, J., Dcgreve, J., and Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci., 34, pp. 755-781. https://doi.org/10.1016/j.pecs.2008.06.002
  6. Bougrier, C., Albasi, C., Delgen'es, J. P., and Carr'ere, H. (2006). Effect of ultrasonic thermal and ozone pretreatment on waste activated sludge solubilization and anaerobic biodegradability. Chemical Eng. Proc., 45, pp. 711 -718. https://doi.org/10.1016/j.cep.2006.02.005
  7. Chu, C. P., Chang, B. V., Liao, G. S., Jean, D. S., and Lee, D. J. (2001). Observation on changes in ultrasonically treated waste activated sludge. Water Res., 35, pp. 1038-1046. https://doi.org/10.1016/S0043-1354(00)00338-9
  8. Eastman, J. A. and Ferguson, J. F. (1981). Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J. WPCF, 53, pp. 352-366.
  9. Jeong, T. Y., Cha, G. C., Choi, S. S., and Jeon, C. (2007). Evaluation of methane production by the thermal pretreatment of waste activated sludge in an anaerobic digester. J. Ind. Eng. Chem., 13, pp. 856-863.
  10. Koehler, L. H. (1952). Differentiation of carbohydrates by anthrone reaction rate and color intensity. Anal. Chem., 24(10), pp. 1576-1579. https://doi.org/10.1021/ac60070a014
  11. Lay, J. J., Li, Y. Y., and Noike, T. (1997). Influences of pH and moisture content on the methane production in high-solids sludge digestion. Wat. Res., 31(6), pp. 1518-1524. https://doi.org/10.1016/S0043-1354(96)00413-7
  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1), pp. 265-275.
  13. Metcalf & Eddy (2003). Wastewater Engineering: Treatment and Reuse. 4th ed., McGraw-Hill, New York.
  14. Navaneethan, N. (2007). Anaerobic digestion of waste activated sludge with ultrasonic pretreatment. MS Thesis, Asian Institute of Technology, Bangkok, Thailand
  15. Neis, U., Tiehm, A., and Nickel, K. (2002). Enhancement of anaerobic sludge digestion by ultrasonic disintegration. Water. Sci. Technol., 42, pp. 73-80.
  16. Owen, W. F., Stuckey, D. C.. Healy, J. B., Jr., Young, L. Y., and McCarty, P. L. (1979). Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res., 13, pp. 485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  17. Quarmby, J., Scott, J. R., Mason, A. K., Davies, G., and Parsons, S. A. (1999). The application of ultrasound as a pre-treatment for anaerobic digestion. Environ. Technol., 20, pp. 1155-1161. https://doi.org/10.1080/09593332008616913
  18. Shimizu, T., Kudo, K., and Nasu, Y. (1993). Anaerobic waste-activated sludge digestion - a bioconversion mechanism and kinetic model. Biotechnol. Bioeng., 41, pp. 1082-1091. https://doi.org/10.1002/bit.260411111
  19. Tiehm, A., Nickel, K., and Neis, U. (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci. Technol., 36, pp. 121-128. https://doi.org/10.1016/S0273-1223(97)00676-8
  20. Wang, F., Ji, M., and Lu, S. (2006). Components of released liquid from ultrasonic wasted activated sludge disintegration. Ultrason. Sonochem., 13, pp. 334-338. https://doi.org/10.1016/j.ultsonch.2005.04.008
  21. Zwietering, M. H., Jongenburger, I., Rombouts. F. M., and van't Riet, K. (1990). Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56, pp. 1875-1881.